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Chapter 8 - .
COORDINATES IN A \ PLANE

In thie chapter we develep eoerdinetee as a tool for -
studying geometry in a plane. This development ineludee
a sequence of basic theorems, the dietenee formula, = -
midpoint formula, parametric equations for a line, the - “T>m
" 8lope coricept, per-lzuern;lie1=1;l.er:ilgq and perelleliem eondltiene,
and the use of eeordinatee\in proving several theoreme

about triangles and quadril terels W

‘We do not speak of eynthetie geometry (or methode or

proofs) v reue coordinate Eeometry (er methods or proofs) -

in this eeuree We hope that the jstudents do not get the 7 A
idea that eyhthetie geemetry and eeerdineﬁe geometry are

two different kinds of- geometry but see, ineteed that they
are ways of studying the same formal geometfy In tHis
course we repeatedly recognize; two dietinet brands of
geometry: (1) the geometry of phyeieel space developed ‘
through intuition, ebeervetien, meeeurement and inductive
reasoning, «and ' (2) formal: geometry developed as a
mathematical system which is characterized by a 1i1st ef
undefined terms, definitions, postulates, and theoremegif
and deductive reasoning. Of course, eeordinate methods
are used in both kinds of geometry. The ﬁejer objective
of the chapter {s to make the student kée ‘that coordinates
-are a useful tool in formal geometry. .

We prefer not to think of this chapter as an intro-
duction to analytic geometry. The- traditional analytic
geometry course includes various standard forms of
equations for lines and conic sections. It empheeieea
the plotting of graphs-and the finding of equatieng of
curves [rom. information about their graphs. . It-places
little emphasis upon the use of coordinates in the formal

i
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\\‘Eevelapment of the eiementary gecmétry of 11nes Friangles,
] andiquadrllatefals Why should 1t? THe students ‘have
L ) ‘alréady acquired this background before they enter the
,ana;ytic geometry!eogrse. However in this chapter the
use of coordinates.in the formal development of elementary
. geometry is emphasizédl This empﬁasis is made rather
- ‘ ' Indirectly. Students see coordinates used in the proofs
':A‘7= of several theorems which are new and (we hope) interest-
ing to them. We try to impress the. student with the idea
that sometimes coordingtes should be used because they
make a. prooﬁ easier and that sometimes they. ghould‘not be
used since a proofsylthout them may -be easier. \We do not
glve any general rules as, to when it is advisable to use_
coordinate methods. We do ot give any because we do not
have apy. Our message 1s that the process of "finding a:
) groof"EEhculd inclmde a consideration of the possible use
of coordinates. - . : (

- . Your geoéetry students have a background which
provides them with a strong sense of relétionships among
numbers. This course takes advantage of that background
and strengthens 1 . A doordin tegsy stem on a line 1s an

idea which evolveg eagily from the notion of a number
line; a simple é&xtension yields coordinates in a plane.
The students' «<oncepts of a line and of a plane are .
¢ enhanced by the introduction and use of coérdinate
) ystems. : .

L]

i
E

A review of coordinate systems on a line is impgrtanf
T for the w0rk of this chapter. ™ Your students Shouid have
no difficulty in seeing that the x -coordinate system and
the y- coordinate system are examples of such systems.
L§ter, in the development of parametric equationg for a
line, a clear understanding of the relationship between
a point on a line and the value of k assoclated with
‘the point depeﬁds:géon a clear u@dérstandiﬁg of the
‘concept of a coordinate system on a line.
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- v - The introductory remarks in the firgt’pafégraph are
' not meant to be a definition. Not all one-to-one corre-
spondences which have the properties gilven here are )
coordlnate systems on a line. The definition 1is in.
Chapter 3. i ' o

The purpose of Problem Set 8:1 is two-fold: tn -
review the n@tign’of a coordinate system on a line and to
motivate the desirabllity of having ordered pairs (or
triples) of numbers as zaafdinat 5,

The unit- -pair of paints need not, of course, lie in
the given plane. In the last part of this chapter we
~ encourage the students to set up an xyicéoﬁdinate system
which will fit the problem. This means that there 1is
- considerablg freedom in locating the x-axis and the
_y-axis. But far our work there seems to be no advantage
in changing the unit Qf digtance, and so.we think of it

as fixed throughout. SN

Some students may feel that our definitions of .
horizontal and vertical violaté the usual meanings of
tnese words. It is convenient to have two words #hich
have the precife technical meanings which we have given
to the words horiqutal and vertical. And 1t seems
ddvisable to use fémiliaf words whose non-technical
meanings have a relationship to the technical meanings we

want.

ﬂlthaugh we usually label points in *ox™ with their
xfigpkdinateg and points in “0Y¥" with their y- caordinates,
should be made clear that every point in *oX™ has an
x-coordinate in the x-coordinate system, and an
x-coordinate in the xy-coordinate system. Of course
these coordinates are the same. A similar statement
applies to every point in i§?§’ When we speak.of the
coordinates of a lent we are referring to its
* ' Tx- éoardihéte and its y- ccordinate in the Xy-coordinate_
system. Some may prefer to label points on the x-axis
and the y-axis with their =x ‘and yécooréiﬁates written

e S

5 ordered pairs.
L] & (
. ’ ka3 N

L * A ﬁ
o |

]

ERIC

Aruitoxt provided by Eic:



e
Ay

i

}i0,2) ' -

- » j1oiﬂ’

2o 00 Joo (0 20) X

S

7. - "i.. ‘37 I [ 1) B e

AV : !

Lo 1

)

_ The statement that there 15 exactly one vertlcal line

g ) through P follows from the followlng conslderations.

’ . -The x-axis is defined to be the line in a given plane
which is perpendicular to the y-axis at point 0 . 1Its
exlstence and uniqueness follows from Theorem 4-21. 1In
the general case, Theorems 4-21 and 5-11 assure us of the
existence and uniqueness of lines through P perpen-

~dicular toé the axes. AN

- our definitions of the x-coordinate and the N
yacoordinaté of a point P are ftated in terms of lines

= through P which are perpendicular to the y-axis and
the #axis, respectively. We could, of course, have
worded these definitions in terms of the lines through P
which are parallel to the x- and the y-axis. For the
purposes of this course nelther wording has any obvious
advantage over the other. In other courses where 7
"obligue coordinates" are introduced, the definition of

. the coordinates is most naturally glven in terms of
parallel lines. ’ )

In this course the concept of our ordered pailr 1% not
defined.” Most of the students have been”Introduced to
- ordered palrs of numbers in their study of elementary
' algebra. ‘Just as the notion of a set 1s taken as a basic

Ty
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7 term which we do not define, so ordered pair 1s taken as
' an undef;ﬁed phrase. 1In this courségﬁgrenthéses, as in- .
,(5;8) , are-used for "ordered pairs" of elements, while
braces, as in (5,8} , are used for sets of elements. The
order of the names within the braces 1s immaterial.” We .
B o should like to emphasize here that ordered pairs of numbers
need not involve two distinct numbers. Thus (5,5) is an-a‘%

X » ordéred pair of numbers® .
" -+ Some student might ask whetHer (5,5) 1s an 7
acceptable symbol for some set of numbers. The answer-is
¢ yes. Indeed, (5,5} and (5) ‘are names for the same set.
According K%sghg definition of equality in set theory,
A = B means that every element of A 18 an element of B,

»
and that every element of, B is an element of A . So
if A= (5,51 and B = (5}, then A = B, for the only
number in A 1s. 5, and it 1s also in B . And the only *
number in B is 5, and it is in A . )
#0rdered pair is not taken as undefined in some
courses. Indeed, the ordered pair, (a,b) , may be
defined as the set ({a, {a,b} } 1in which the order of
ﬁhevmemBEfs,of the set may be altered without actuadlly
changing Jthe set itself. We could Just as well define 1t
as (a, {b,a} }, or as ((a,b), a) , or as {(b,a}, a} ,
since these are all names for the same set. Let aus éée
how t&is definltion applies in an exaﬁplé. Suppose v
A= (5,8) , B= (8,5) . Then by definition A = (5, (5,81};
B = (8, (8,5)]}] . Since 5 1is an element a®’ A , but, not
- of B, i1t follows that A # B . 1In other words (5,8).
and (8,5) are different ordered pairs. (Note that A .
and B , consldered as sets, do have a common element, . '
since (5,8} = (8,5} .)
For the purpose of this course, however, 1t is best
to use the ordered palr symbol (a,b) without'ghy
reference to the definition in terms of sets. .It is
important to understand cleariy the Eoncegt of equality
for ordered pairs. Thus, (a,b) = (¢c,d) 1if and only if




o '5 “a'=c and b=4d .- We gauld prove this as a theorem if
k we defined ofdereé pair in terms of setafi Sincé we do, ~
not define ardéred palr, we accept i1t as a definition of"'
' equality for ordered number’ palps. According to this,

' ~ tdefinition (3,5) = (3,5) Tl, ) = (3,5):, and -
(x,y) = (3,5) if and only if x =3 and y = 5 ._ Thus,
°/ (a,b) = (c,d) 1if and oni¥ if a and ¢ are names for

© the same number, and b and .d are names for the same

number. " s V gﬁ\\; ' ’ '

* P

o ; - Hith régafd to using ordered pairs as names for paints,

; it shﬂuld be clear that any point could ‘fave any ordered
pair of real numbera fof 1ts name--provided the xy-coordi-

: ! nate system 1s” prﬂperly set up., Thus, (0,0) 1is the name
af any pDiﬂt whatsoever-«for any point can pe chosen as
t.he origin of a coordinate system. But once a coordinate
system 18 zet up in a plane we may regard it as a "frame
of reference," and every point in the plane has a unique .
ordered pair of real ntmbers as 1t5 name,

Ngﬁé our use of "plét" and "graph" in thils text.
We use plot as a verb and graph as a noun. In drawing a
* ' g?gbh ﬂif the set of points is unbounded, it ls impossibié
® - to Sh@gﬁ all of the paints%% Just as we use arrcwz_tc

In the intradpctory work on plotting some teachers
\\ & - may prefer 'to use fhe chalkbcarddexclusively as a visual
ald, Others may prefer to use a "pegboard" with elastic
materials of several calafss!say white for tﬁﬁigxee and
yellow for the graph

SN2 taanan I




L - C - .

The purpose of Problem Se% 8-2 18 to help students _
’1&7:ﬁ the concepts of ﬁaardinates %nd gbaphs The number
of/problems assignéd from this set will vary greatly
according to the backgrﬂund of the class. Some students, .
for which this part of %he course ‘is ,largely review,
should work ngy a few problems in this set, h

In canneeticﬁ with Theorems 8-1 and 8-2, a possible -
teaahing prgblem mlght arise in that same students might
not see the "point" of these theorems, Our Ruler Postulate

" tells us that AB = IVE -, ?Al but it does,not tell us
‘that PQ = - |yp yQI The fact is that PQ = lyp - yQI
depends upan r(l) the definition of the y-coordinatesd of
P and Q which implies that ¥p = ¥a and YQ =Yg s
and (2) the property of parallelograms, which gives us

= PQ . . ’ .

1 . The two examples uéei to introduce the Distance
.Formula involve finding the lengths of- oblique segmenésg
g%is;m;ght suggest that the Distance;Formuia!is used only
in such cases. However the formula can also be used for
vertical and horizontal segmenﬁs (

\

. that yC -§(yA + yE) ; ?hg rgct Féét ,?M E(VP + yQ)
. »neeﬁs prcaf In the prodf in the text we start with M :
_as the midpoint of PQ . The fact that Xy = Xg follows
’ immediately from the ract that M.and P lde in the
samé vertical line. The fact ﬁhaﬁ ¢ 1is the midpoing of

_trangversalg, Theorém T=-2.
Theorem 8-9 is, of course, a locus theorem. Although
I3 the w&rd "Jocus" is not used in the text it 1s mentloned
b ﬁn'passing in the text in Section 8-6 after the students
have had some experlence with the concept. To prove the
theorem we first identify a particular vertical line, and
call it m . We then show that m 1s the set of all
points in the xy-plane each of which has x-coordinate a .




- L= ;7
. f -

I

- ‘ - 5 . - .
~ﬁ=" We show that every point in m haa x= ccordiﬂate a

— (Part 1) and that every. poinpewhich hag X- caofdinaté a

Isin m (Part ﬂ) 'In other words, every point in m

has the éegired property, and every point which _has the

* . —desired pf@péfty s im m . In the last part @f the-

' .~ proof;, we show that it ig impa sible to have two vertical

£,
IR lineg cantaining A in view of .the ‘Parallel Pogtalate.~

- — N s
'+ Symbols are used in mathematics because they °

) facilitéte communication. The statement x >3 1is a
- statement which is true if x 1s 38 . 1In elementary

algebra we may want to find out how old Mary is. The
avallable information may include the fact that she is at
least 3 years old. If we let x denote her age, then
#e write x 2 3 and, using other avallable 1nformatian'
wa may eventually‘}eafn Nary's age. In this situation,
ix in the statement, x ; 3 , stands iPP one numb;ri In :
another situation we may wish to con Sider the set/of all.
EE . We
=P use the symbol (x: x > 3] to denote this set. It 1s 4
- good symbol in the sens se that once we understand how the
" symbol 1s formed we khow what it means without being told.
What is Hé graph of the inequality x > 3 ? It depends.
' The e%giuildar symbal makes 1t definite. The graph of
{x: x >3} 1s a ray. The graph of [(;,y): x >3} 1s
' ~ “the union of a halfplane and its edge. The graph qf '
((x,y,2): x >3} 1s. the union of a plane and all the
points which lie on the same uide of it as does the point
4,0,0) .

In connection with the subject of equivalent equations

real numbers which are greater than or equal to

H

s some teachers may desire to relate implice ation with get
inclusion, and "reversible steps" with set equalfty as in

the following examples. We state first an implication in
three different ways. )

g 3
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- e =
In words: . r " N B
- I 2x + 3 =4x + 13, then 3 =.2x + 13 -t
T - . it 511, - o il L . F;/
Using - A—EFB to maan A impl,,ieé B" : , -
i . X ’f\‘
‘ . [ex + 3 =-Ux + 13]——Ehﬁ[3 = 2x + .13} , v
; , )

S Us ing "AC: E" tc; mean ~"4A ig a subs set of B i
%“ » . ' ) . {(X;Y) E—xﬂt*‘ 3 = hx + 13/3 i f(x,y) EX + lB}’.fi

‘ The "reverse step" is stated three different”ways as:
. = ] . )
.o If 3 =2x+ 13, then 2x + 3 = Ux + 13
| o ] ) .
[3 =2x + 13 —=[2x + 3 = Ux & 1371, .,
{(x,y) B.=2x +13}C ((x,¥y): 2x + 3 = Ux + 13)

,mbining the statement and 1ts converse we can

write 'the compound statement in three ways:

il

bx + 13 if and only if 3
i —=[3
((%,¥): 2x + 13 = bx + 13} = ((x,y): 3 = 2% + 13}

‘4:13

E‘:{+ 13]

2x + 3

L
+

=
L]

[2x + 3

I

Another way of- saying that the five equations are
equivalent is the following:

(x: 2x + 3 = hx + 13) = (x: 3 = 2x + 13}
N

it
—
»
]
=
o)
1]
It
»
Mt
Ll

“{x: 3 = 2x + 13}
=*x: 2x = -10} = [xz-x.= -5]

~or briefly that

(x: 2x + 3 = 4x + 13} , (x: 3 = 2x + 13} , (x: -10 sgx,

WJ

(x: 2x = -10} , ([x: x -5]) aﬁgﬁfiaa,ﬂahegbfor the "same
set of numbers. (Another na??\fOF this set 1s ([-5) )

If we think of each of these five equations as a
condition on (x,y) , then the fact that these fiv

equations are equivalent means that

[(x,y): 2x + 3 = 4x + 13}, ((x,y): 3 = 2x + 13} , -

((x,y): -10 =2x) , ((xy): 2x = 10) , ((x,y): x = =5)

are five nameg for the same set of peints 1in the xy-plane.

Thus two sets are equal if the conditions which define

them are,équi%alent; ,
‘ Lig

14



w

- - e

In Section 8 7 we develop parametric equatiﬂng for

b}
o

’liﬂég .This is not the traditional approach to the gtudy

of liné@'uging coordinate methods. But we believe it .is

a good approach. The traditional treatment emphaslzes *C%
. early in the gourse the relationship between linég and

T linear equations. The student "sees" a lifie as & single
abject of tHought when he reads y = 3? + b, ETEE
K 7 preaent treatment ;mphaqing the Fonﬁépt of a llnE as a

_'set of points. The symbol

C ({x,y): x =4+ 2, y=05+23k, k iz real]
1s, by virtuye of the braces and (x,y) before the colon,
fiprst of all, a sét of points. And the symbol tells us
how to get the x and y ., coordinates ofs any point on the
1line in terms of the number k} which has an interesting
geometrical 51? nificance. The feiationship of % to ¥
“is clearly revealed through the "middle man" ¥k . Although
the present treatment emphasizes parametric equations for
a 1iné% we do include a two-point form and point-slope
form later in the chqptér;

Just as Hx + My =8 ,3x+3y=6, 5+ 5 =10,

- are three equations for the aaﬁe»line; s0 a line u s

répresented'by many different parametric equations.

Consider, for example, the line

-1+ 4k, y=2+3k, k is real}

2 (133) ’ (5;5) s the two
points which yield the equations x = 1 + lk and

y = 2 + 3k 1if one applles Theorem 8-11, using

(xl,yl) = (1,2) and (x5,¥,) = (5,5) . Using any two
distinet values for k other than O and 1 , for

i

= 0,1 we get (x,vy)

example, 2 and -1 , we get two more polnts on the lins

p , and wsing them in Theorem 8-11 we get another pailr of

paramet: ; eguations for p . - / )
Wlt“ = 2 we get (xlgyl) = (9,8)

-1 we get (xgjyﬁ) = (-3,-1)

1 U

w1t¢

Then p 1s the line througn those two points, Thus,

—_
e

O
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= oLt ) ) f?
(2) »

In (1) k is the coordinate of the. point (x,y)

((x,y): x'=9 - 12k , y=28- 9k, SH is reél]

in the coordinate system on a line wnich is determined by
) il - = _ ~ _ - . B .

taking the coordinate of (1,2) as 0, and the coordinate
L .

ofv, (5,5) as .1 . In (2) k_ is the coordinate of the -

point (x,y) in the é@@?dinat§§§ystem on a line which is
determined by taking the. coordinate of '{9,8) as 0 and
. <+ the coordinate of (-3,-1) as 1 '

®  We have motivated Theorem 8-11 in the text by con-

. sidering a particular line. The following proof for th?
. Lgénéfal case of an oblique line is included, here for '
those who may wish to see 1it.
THEOREM. If El(xl’yl) and  P,(x,,y5) are any two
p@ints on an oblique line, .then
- o ] i o ] B L
20 =-{(x,¥): x = Xy + k(xg - xl), v =, +»L( Esyl)j
o k 1s reall - .
-
Proof: On PP, there is a coordinate system on a
line in which the coordinate of P, ~is O and the
.coordinate of P, 1s 1 3 we call this the c-coordinate
system. Let AB denote the measure of the distance
between two p@iﬂfs "A , B- in P.P, relative to the
R T 172 —
] . ¢-coordinate system., ILet P be any point-in _Plfg s
'3 - =
let PlijP@'!PJ ,» be the feet of the perpendiculars from
Pj, P, , F , respecti vely, to the x-axis, and
El”,Pﬁ”jP“ , be the feet of the perpendiculars from Py,
P, » P, FEE;ECtiVEljiltérfhé,y=aXiS. Since perpendiculars.
to the x-axls are parallel, it follows, if P is distinct
f'rom P1 and’ P,., that the betweenness relations-among
Pf, Pé,ﬂF -are preserved among Pl'; Eg'; F' . For
example, P, 1s between P, and P _1if and only if P’
is between P,' and P' . Let k be the c-coordinaté
Of ’P . ’ ' o i s [
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‘ We can@ider.twa QEQES‘ (1) P 1is in,'Png s
.’?i » (g) P i3 in th; ray Qppaﬂiﬁe to -?1PE .

(1Y 1In thisfcase k>0, k="pP (in C) ‘and

PP (inC)’ , ' )
kK & PP (IR ) since PP, (m c) = 1 But
. PP - ) .
' = since thé ratio of two distances is
f 4 - : '

' independent of the coordimate systems used. (See
PastulaEEL;B.) Also, from the theorem regarding the
proportionality of segments aﬁitwa transversals of three

~ parallel lines, it follows that -

I p il . \
;rjpl,P - _hF R
PP PPy
1 i = " 1 — — a7
But P,'P, B3 P "P, lyE J1| s
o 7 /
i 1 = 5 it - - - . .
Py'P [x » Py"P ly =yl
, Ix - x| ly - v, ) )
Then K = 4= —t = 1= ——+ . Because of the order
|x’£ = K]_T |Y? = y‘ll §
L B

pPDPéngéS mentionédfan the previous page, if X - Xy £0,
h then x - x; and x, - x, are both positive (if Py
lies to the right of" P,) or both negative (if P, 1lies’

to the left of P Hence, in all ‘4ases,
) 5 by
- X , /
, x - x, <y oo
Tk %izﬁsf;éa: and x # x. + k(x, - xi):_

Similarly, we treat the second case.’

(2) If P 1s in the ray Dppasite to P,P,
. y. 1%2
B , £
k <0, PyP (inC) = -k , 2nd. -k = =

ERIC
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] 1 , 18 positive and the other is negative. Hence
5 . [ 2

-k = ;fie==%;s=: and X = x; + k(x, - %)

Similarly, y =y, + k(y, - yl) .

]

It might be helpful, in the case of an oblique line, -
1

B,e, to think of three coordinate gystems on.a 1i

¥
as follows.

DV

(1) The coordinate syst

ped

m in which the rol')rdigat:é
of P; is O "and the coordinate of P, is 1 . The
coordinate k of a.point P tells uz @nathéﬁ P is in
?TT?T (when k > 0) or in the opposite ray (when k < 0)
And tne absolute value of that’c@qﬁdinate k 1s equal to
the gquotient obtalned by dividing the distance between

Pl and P by the distance between Pl and Pg

of" P, 18 x, and the coordinate of P, 15 x, . The,

1 - 1
coordinate of an arbiltrary point P on ElP
the x-coordinate of P ' ’

(3) The coordinate system in which the coordinate
!

©of Py "1s y; and the coordinate of P, 15 y, . The

=

[ W]

coordinate of an arbitrary point P on ?i?g i P’

the y-coordinate of P

lgs {(x,y) cx =1+ 3kys 4=k, kis real}
R A . 'y

o,



It might be helpful te think of the parametrie
equations in this theorem in relation to the results of
Chapter 3 as follows. Using the notation of the previous
proof it follows from Theorem 3-6 that if

k >0, then T S k 1if and only if

and only if

F
1
H
-
+
~
—
b
M
It
o
[ftt
—t
o
o]
o
‘ 3
mY ‘
1}
=
-
p.]\

e

- L P 1 -

V=Y + k(yE = yl) . Ffom the pfesént'théérem-we see

I

that 1f k > 0 , then <= = k 1f and only if

s 2’1 - ; g E
¥y + k(yE - yl)‘ Similarly,

E
]
i
+
~
Cama
™
M2
>
s
o]
ot
(3
1]

If % O, then poyp—y = -k 1f and only if

I

x =% + k(xy - £h) , P&f?éﬁli -k if and only if
T,

P.F r

g
I
L
—
4
=
>
s
1
(3
=
Mt
L
ju)
pa
|
‘\
q
|

»
i

Xy o+ k(xg>5 xl) and y =y, + K(yg - yl) .

In discussingfghé general case of a line it 1s
important that e understand clearly the varlables invelved.
Thus the symbol
((x,y): x=a+ kb, y=c+kd, k is real} ,
involves the seven varlables, ay b, ¢, d, k, X, ¥y . For
! N
each set of numbers a, b, ¢, 4, (with b and d not both
zero) , ‘
((%x,y): x=a+ kb, y=c+kd, k is real}
iz a line. It should be clear that
. ((x,y): x=a+ kb, y=c+ kd , with a, b, ¢, d,
’ k real}
i3 the set of all peoints in the xy-plane. For 1if
U5l

: 19
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Just take a = Xy c g,xlg’b = d=k=0 .o

(ilgyl) is any point there are real numoers a, b, c, A; K..e
sucn that P

Suppose next that a, b, ¢, d, k are real numbers.

What is the set | .

oo lhy)ix=a s,y /e b ka) 2

It" should be clear that this 1s+ a set whose only element ;4:
is*the péint (a + kb ,.c + kd) . .

When we think of ! ;

{({<,¥): x=a + kb, y=¢ + kd , k 15 real]

as a line, we are thinking of a, b, e, 4 (b and 4 not
both zero) as "fixed." That 1s the reason we say a; b, A
¢, d are real numbers befare we write the set-builder
gymbol. Also we are thinking of k as "taking on" real
values. Each value "taken on" by k ylelds a point
{x{y) on the line. The line is the set af all points
(x,¥) each of which can be obtained from the“équatians a
¥*=4a+ bk, y=c+ dk using some real number for k.
(We cannot Jjuggle the a, b, cgiéig they are fixed £or a .
given line.) f )
There are situations where there are still more
"flavors" among the variables, specifically, in situations’
1ﬁvclving SE%S, or families, of lines. For example, 1f
xi and y, are real numbers, then
{(x,y): x = X+ kb , y =y, +kd, k is real)

might be thought of the family of all lines through
(xl,yl) . Each choice of the parameters b and d (not
both zero) yilelds a line in the family. Once b and 4
are "pinned down," each value of k ylelds -a point on

that line.
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are parametric egquations for a 1Lﬂ§, the variabl

Or we might think of Mt as a-real number, .and then

£
((x,y):'x=a+k,y=Db+ m , k 1s real}

*

-~ might be thought of as the family of all lines in the

_ LY
¥*y-plane with slope m . Each cholce of vaiﬁ;s for a

)

and b would yield a line of the family (the line with

\ZI

slope m- passing through (a,b) ). Omce a >and3 b are
fixed, each value of k %ields a point on that line. <

. In the text we have not defined parametric equations.

4 Theorem 8-12 stands on its feet w1§?aut sué@ a .

definition. But we do speak of the equations, x = a + bk,

r"\

y = ¢ + dlt , which appear in the set-builder symbnl as
parametric -equations. Gf‘caurse; parametric eqguations
appear in many plﬁcez in mathematics, and there are wany
dition to straight 1ines which can be

represented by pafamétric equations. The parametric

n isely those
12, Thus, if x and y are
(not both constant) , then the set
n ine. To repeat, if

numbers, with © and d not both .0 ,

¥ = a + bk and ~ y = ¢ + dk

4
Py

e Kk
the parameter and the set of all points (x,y) 1s the

line. For further discussiocn of parametric equati ons and

parameters see Talks to Teachers, No. 7.

In thls treatment of slopes we avold the use of

‘direc ted dlstance. We motivate the idea of slope using

the "rise over wrun" idea (which 1s a non-negative over

[

positive situation in the physical world). Then we

def'ine the Sl@pe of a 1ine aegméit in terms of the

coordinates of the endpoints e segment. We show,
1

M—‘-

Che | of
then, that all segments of a line hav the same slope, and

1?1‘ a line as we do.

this permits us to define the

]

15 |
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B

Our proof that all segments of a line have the same slope
does not involve a tacit assumption that the

y =

[

[
I
<
H

1

o

and

&

L
o

the same for ‘all cholces of two points

* matically sound to prove this p
e

1 1

(x,¥

=

v

e

of non-vertical lines:

Th@se,éaf%igel to the x-axis;

Those ‘'whien "run uphill," that is,.

#

it

e

. g—

ﬁfi )
P Xpay

A

il _— P e :‘ =
- —e———— ———— —=

whicn

in the line.

-

and (x,,¥,) , and negative for some other choice. Of

course, a picture "shows" that if a line is going uphill

3

) Those which "run downhill," that is, those for

llne.

- X

1

Y

sign" of

operty by consildering -

-
—+
o
o]
[}
T
|
b

) on a given line. It 1s not mathe-

is PGSit%ge for every choice of two pointj/

L -

*

is negative for every cholce of two points

Such a classifidation into thfel class

1

for example those lined#for which

or some choice of polnts,

T
b
ot
-
<
w
4

(xq,¥7)

bétween two of 1its points, then 1t is golng uphill between
£

three cases listed on the
Our proof avoids assuming this by capitallzing on

lines.

- every palr of 1ts points.

the properties of coordinate systems Dn;aglihéi

- /
! : /
. _

previous page do include all

Pictures convince us that the
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AB || CD or A, B, Cy D are cailiﬁeasie To test faour

) - i
- ) d

In the ﬁf@éf of Part (1), of Théﬂfém‘8=l% "p and
q are two parallel lines. Hence, @, and Q, are on
the same side of line p . If they are ab@ve p , then
hf and k are both wositive; 1f they are below p ,.then

h and k are both negative,

', In connection with Corollary 8215, note that if | A,
: ; .
B, C, D, are four polnks and irf m__ =m__ then either

W

points A, B, C, D for collinearity we could check to see
if they all have the same x-coordinate. If not, then they

are collinedr if and only if m =m = m__ ’

'In traditional analytic geometry cour ses, the equation
in Theorem 8-16 15 zometimes called a symmetric equation
is not included

for the line in the xy-plane, Although it
in this text, this result extends easiiy to symmetric
soordinate system. Thrus,

lfl

equations for a line in an xyz-
if P = (xl,yl,ﬁl) and Q = ( Xo» ﬁ,zj) and 1if

- yl'% 0, *g -4 # 0, then - A

l"’r

[
2]

, X - X y-v 2 1
e o - 1 1
PQ = {(x,y,2) = = e )

1

!

!0—”
il

In the proof of Corollary 8-16-1, it 1s permissibl

to divide by xg - Xl and by Vo - yl ; 8ince they are
each dirferent from zero. This follows from the fact

- _ . - . .
that PQ .of Theorem 8-16 is &an oblique line

A working knowled f%ag-paramétric edquations for a
line, the equations @f'tﬁe‘férm X=4a and y =a for
vertical and horizontal 1ine§g fespéctively, and the

equatlons in Section 8-7 ff,, will provide the student a
good background for warh;ng with lines in the coordinate
geometry of the plane.

If you are planning to teach Chapter 10 you may want

to omlt this section, along with many of the problems in

the next problem set. In Chapter 10 we prove that two

!158

23



non-zero vectors are perpendicular 1f and only if the sum

of the ﬁroductz of' corresponding components is equal to
&% zero; that is, if aja, + blb = 0 . The similarity i
‘begween this conditi and mm, = -1 1is revealed if we
u1 - bg ) ) A
note that. mo= - g? and mg = - gzi(al, a, # 0) .
- If you plan to teach Chapter 10 you may also want .to

omit Theorems 8-22 and 8-2% since these are also proved

as Theorems 10-15 and 10-1) respectively. Actually there
are many more theorems in Chapter 8 thch may be post- ,
poned toc Chapter 10, where they may be proved with the aid
of d%re:ted segments or vectors. However you should permit

your studente sufficient practice in the use of coordinates

o

in proofs of theorems before presenting them with the
vector methods. '

sec ti@n we Intend to prepare the student

=

n this
with some basic de
parallelograms and special kinds of ‘parallelograms. Thewe

M

initions and theorems concerning

lo-a‘

are some pgood opportunities to use the concept of subsets
as indicated in the dlagram in Section 8=11. It is also an
opportunity to explore some of the pFDpEFtiég of

parallelograms and special kinds of parallel@gramsi This

study is continued in Section 8-13, where coordinates are

3
uged extensively-as an aid in proofs. In this section

U

r@jf: need not use c@@rd;natesi

In Proof’ I we could, of course, get up an xy-
¢oordinate system so that A = (0,0) , B= (b,0) , C = (c,d)
with o >0 and d > 0 . The proof given in the text

could tihen be modified slightly by omitting several

]

av
absolute value symbols near the end of the proof a

follows:
e b
DE = ‘r§ i
DE = %AB
a9
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) The proof with coordinates of Theo;ém 8-22 requires ’
o no lingenuity; Just do what comes naturally and there is
' o A - ’ oL,
the result!:« The traditional pr@éf without coardinateu

F—

is a blt ingenioug Fgr those of yogswh@ dé not recall
1

g as follows:

it, the plan of proof R

¢let F Dbe the point in “DE” such that DE = EF and E
is between D and F . Prove CD = FB , TD |1 F8B .
AD , ¥B || BD , ADFB 1is a parallelogram,

—
5
b
!
o
I

DF = AB , DF || AB , and DE = #AB , DE || &F

Another proof of Theorem §-2

2 ap}ears in Chapter 10

i

on vectors. Some teachers may wish to gmit the proof; of
everal theorems which are proved both in Chapter 8 and
in Chapter 10. But in, the .case of this théarem we have

»\']

used it as an example in introducing prodTs with
coordinates.. In no case should it be omitted from this
chapter.
This section, 8-13, shows how coordinates are used
1,5 simple proofl's of theorems. The

to advantage in producin
subject matter of these theorems was chosen deliberately
to be parallelograms in order that students mighﬁ continue
the study inltiated in Section 8-11, this time with

coordinates.

Theorem 8-23 seems to say that arpéra
determined by three of 1ts vertlces. It is
and it’ 1s not in another sense, If A, B, C, D are the
vertices of a parallelogram ABCD , and If A, B, D are

[._4- m

in one sense,

”‘{"::, .
"B

25

O
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F Y ) ¥
; =

given, then there is one, position for - ¢ . Ir A, E; c,

W

D are the v§%t4ceu of a parallelogram, and if A, B, D

"

ng given, then there are three positions rbr ¢

# N ¥

['m

[
[ ]
o,

AECD 1is a parallelogram. AEC, D

B ? three parallelograms.

Tha topic of tfapéz@iﬁz in gectfon € - 14 18 left™
alma;t entirely fcrhstudents. For this reason only the
formal definitions are given with no diseuszlan of theorems
or proofs of theorems. It 1s hoped that students will
carry on their own investig ither by proposing
propositions about trapezoi :ould then be proved
or disproved, or by d@;ng the in Problem Set 8-11,

" ) and pé;haps thereby possi may be suggested to
them. ? ”

In setting up the coordinate system we say that there
18 a real number a, a # 0, such that A = (-a,0) t
Some teachers may think 1t a digression to insert a # 0
But this 1s needed later in the proof and it scems best to
insert 1t early. This iz in keeping with4thé modearn
emphasls in elementary algebra of speclfying the :domain
of a Vﬂf%%ﬁlé. 3 »

. Awdﬁ; ng to the text we mote that codncurrept rays
) lie,.on Eﬁgféifpnt lines. Be sure, also, to noté that
;
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- The painth I/7 15 1n the interior of each of the
apgles of the trlanglg, hence‘in the. interior of the
... ! telangle. I*h is .equi 1stant from the lines which cantaint

he three sides, it 1s The senter of the inscribed c:ircle
“of the triangle and 18 sometimes’ called the 1ncenter af'
the ﬁria.ngle. .

w6z 'y




I;l trative Téﬁt Itema
L T . Chapter 8
‘ o . y, Chapter © )

e

1. Given AABC with A = (6,2) 7 B = (-8,7) ,
(a) ' Find the coordinates of D , the midpoint of YTl
(b) wWhat is the slope of AC ? - -

(¢) Shaw that BP | AC . -
(d) what kind of triangle is ABC ?
(e) Check Yﬂur answer to (d) by finding ‘BC , and BA .

(f) Express ?KEF'using parametric equations.
(g) Express *BB™ using the two-pSint form.
(h) Find the coordinates of.the point of intersection
of ‘the x-axis and “ic”. . L '
(1) Express the line through B parallel to i Yol
f ®lope form.
BCAE 1is a parallelogram.
CABF 1s a parallelogram.

2. '(a) Find the length of the side of a square whose
diagonal measures 1242 . f
(b) How long is the diagonal of a square whose side
measures 12 4/2 ?
3. For each of the properties listed below, tell whether a

as a rectangla) as a thgbuﬁ; or as a square.

~(a) 1Its diagonals are congruent,
'(b) Its diagonals bisect its angles.

(¢) 1ts diaggnéis are perpendicular to each other.

'(d) 1Its diagonals are congruent and mutually

. perpendicular. |

(e) It is egquiangular.

(f) It is equilateral. -~
‘(g) It™is both equiangular and equilateral.

g »

L63

g )

c = (2,-4) R



Y, - Pfove that a pafallelggram is a rectangle if" nd only if
its diagonals aré-cangruent.r

- !.?- - ' » L

5. “Find the coardinates. of & - -
AB™.
# : - - EA’ = £
*lic) AP = 1ODAB and P 1is in AB™ e
6., ™Pell whether p 1s a vertical, a harizant 1 or an.

oblique line. )
(a) p= [{xy): x ;;3 +2 , y=2, k. 1is reall ;4:3

Lo
n\

' (b) {(;[‘Qy)- X = 3"4‘ El{ y ¥ = 2 + K s e is Peal]
= . (C) P = ((3{;?) X = 3 3 y = 2 + =k;i§,; k‘is real] _< : . Yy
(d) p= [(x;F) X A - I
(e) p = ({k,y): N3

7. Proves The line containing the medlan of a trapezoid
bisects each of its altitudes.
. 8. "In rectangle ABCD , AB = 20 ,"BE = 15 .
P-4 ] - . — B AP
~ If P is in AC and BP l AC , find i




Chapter'§=“ -

PERPENDICULARTTY ,* PARALLELTSN, AND\COORDINATES
r IN SPAGE S E
- The main objeetiveéﬁf this chapter is to help the
“‘gtudent develop his concepts of spatial- relationships.

+" We want him to be able to think in terms of* three dimensions.

and to be able to visualize and sketch threé-dimensional
configurations. ' ' ‘

No attempt has been made to present a completely
formal approach to space geomefry. We agree with-the
Commission Report that there is nelther the “time nor is
there "virtue in so doing."” We want the student to
"3iscover" the éssential space relatianships and we_have .
therefare used an intuitive approach in the form of
exploratory problems. These are fallgw§d by formal
theorems, with some deductive proofs iﬁcluded Just to
convince the student that tHere is nathing very pecullar
about proofs in three-dimensional geometry One tould
easily spend a great deal of class time on these preofs,
but this would not be eeongmical Most teachers will aim
for comprehension of the theorems rather than facility in.
proving them. -

Prablema requiring proofs are optional. Those praofs
not déveloped in the text have been included in this
Cormentary for teachers who wish them.

It 1is _to be haped that teachers will extend the

1ntu1tivé§fiésentatlan at the beginning of each sectlon. .
‘The ‘1ists of exploratory problems are far from exhaustive.
Likewisa, the Suggested physical models to be used in
experimentatlon.are the most readily available cnes——pencils
'paper, books. Many cher frequently used alds ‘can prove
most helpful. These include wire coat hangers, thin wires,
'EtraWE, astring., cardboard, toothpicks, and balsam wogﬂ,
Standard clasgroom equipment such as yardstlcks, painters,

. hes
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gﬁi'windéﬁ'ﬁaiés can serve as gaqg demcnstration models,
In additipn, some excellent méterials for constructing.
models are available cgmmercially from suppliers of
8clentific and mathematigal equipmqnt Models constructed
by the student are préferred to tho#é’ feady—,ade

At the. beginning of the first unit, it might be well

'~to review related propebties studied in the plane. It

will be hélpful if the students recall the simple rélationi
ships mentigned in Chapter 2, and then discuss the

fpastulates stated in later chapters which assure them of
the .existence of infinitely many poiﬁts Refer to the
7‘17Reviéw Problems at the end of Chapter E cancérning the

number of different planes that might contain (a) one *
point, (b) = ertaln palr of points, and (c¢) a certain set

ze points. Ccntrast the answers glven at the end of
Chaptér 2 with acceptable answers at this point in the -
development of our logical system.

The set of Exploratory Problems is designed to
capltalize:on. the students' intuitive ideas of parallel
1ntersecting, or perpendicular lines and planes. This 1is
also gn opportunity for the students to practice sketching
figures in space. At this point, the diagrams should be
carefully checked and, when necessary, the students: should

‘be referred to the suggestions offered in Appendix Vv .

At the beginning of Section 9-2,” the experiments may
be performed individually or as a class activity._ In .
either ocase, try to make certain that all of your students .
have an intuitive idea of perpendicularity in space befare A
proceeding to the formal definitions and thearema‘§ﬁ§ T

Discussion of a Spoked wheel and axle shguld mak&ﬁ; 74»
Theorem 9-1 plausible to. the students: Any 1liné perpen-
dicular to the-axle at the hub must be in the plane of -

the wheel : ‘

466
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THEOREM 9-3: There 1s a unique line which is p‘e’rj:endiéular
to a given plane at a glven pgint in the plane

. 'Erobf-' To prove this thearém we musti'!ahaw two ,.
things: first, that there ia atjgat one-line perpen-
dicular to the given plane at the given point, and second,
fthat. there is m:: more than one such line.

: 4
To show the existence of 'a perpendicular 11né; let F

be a given point: in a given plane # and let p be any
iine in Ep which contains F . According to Postulate 24
“there 1s a uniqué plane, say A2 , which is perpendicular
to p at F . Let r be the intersection of the planes

#.and A and let L be the line in 7 which is.
perpendicular to- r at the point F . g

Then ;é is perpendicular to both p and r . Hence, by
Theorem 9-2 it 1s perpendicular to the plane Z at the
point F , as required.

' To show that there 1s no other line which 1s perpen-
dicular to & at the point F , suppose that there were
such a dine, say £ | Let £ be the plane determined
by £ and £ , and let p be the line in which o2
and 27 intersect (Postulate 9).




Then in the plane & poth L and £' are perpendicular
to p at the point F . But in a gii‘réﬂ plane there is

a given pgint, Hence the aaaum;:tian of a séeond 11ne,

A ' , perpendicular to the plane /2 at the point F
leads to a contradiction and must be rejected. In other .
- words, there is exactly one line which is perpepdiculaf )
to the givén plane A at the given point’ F in ;g’

. 'TZH'EGREM 9-7 7. If a line intersects one of two T"&istiﬁct
o parallel planes in a single paint 1t int.erser;ts ‘the

I3
4

other plane in a single point also.”
Proof': 'Let 2. and & be two distinct parallel
" planes and let £ be a line which intersects # in a
gingle point, say P . Let R be any polnt_ in the plane
A2 not on £ , and let X be the plane determined by

_ggandﬁi _ .

\M\ )
Co
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"Now QE: has thé point P in cammcn with the plarie ,35 a.nd
. the point R’ in common with t’he pla.rfé A2 . Hence by’
Theorem 9- 6, X st intersect 2 and y 4 in two parallel, .
« llnes, say P and-»r , reapectively, each of which is
clearly different from: j . fFhus in P we have two
N parallel lines, p and - ; one of which, ﬂs.mely p, is
‘ met: by :.-é . The other llne r must also be met by .
Since £ meete. r ,. it certainly mgets 2 , as EEEéftéda :

e

THEOREM 9-8, 1If a line is parallel to one of‘ twg par‘allel
Lt planes, 1t 18- parallel to the other alsa

£ .

Proof: By hypothesis, the line gé and the planes
¥4 anci?l satisfy the conditions that Z||Z and
2 || ;:?1 g We wish to prove that ./ | |;§’1 -+ Suppose
£ were not parallel to 2, Then £ intersects 35’
in a single point. Thus ,E’ , which by hypothesis does
not intersect .£ 1in a single point, 1s distinct f‘ram?:?;
We niow apply Theorem 9-7 to flnd that ﬁ intersects 2

in" a single point. Contradiction! Hence £ | I,Zf’l

/

' | wdq -




THEOREM 9-11. If a plane is perpendicular \‘Fc ong- of tw
distinct parallel lines, it is perpFndicular to the

‘other line also.’ : : IREPRRRIR

é.
" let ,Z? be a plane which is perpendicular to one of these
1ines, say £ ’. at the point Ll . Then by Theorem 9- 4,

Z? must als:s iﬁtersegt ﬁ in a point, say L,

Proof: Let ./, and ¢, be two parallel lines ang. .

| “/'

Now at LE " there 15, by Theorem 9-3, a.line wnich is
,perpendicular to A~ , say 353 By Postulate 25 this
line 1s parallel to s{g But according to the Parallel
Pc:stulaté, there is a unique line parallel to a given line
through a given point. Hence, since both .a! and ;,4:3

are parallel to séﬁ and pass through L, , 1t follows
that sl and a‘! are the same line. In other words,
,42 is also pérpendicular to }5‘" , as asserted,

' THEOREM 9-12. If two lines are each parallel to a third
line, they are parallel to each other.

%

Pr-oof‘ Let ,,J - and aé _ be two 1ined each of which ]
is parallel to a third 11:133 h. Let P be any point of .
b and let 2 be the plane which by Postulate 24 1is perpen
dicular to b at‘ P . Then by Theorem 9-11, sg and 4!2
are each perpendicular to 353 .- Hence, by,Past_uzlate 25, )
they are parallel, as asserted.




EHEQREM 9113 Given a plane and a point not in_ thé plane,
there is a unique 1line which padsses thraugh the paint

and 1ias perpendicular ta the plane. =
. Proof: Let ;E} be the given plane ané let A be the
given point, not in 2 . Let P be any point in # and
let b be the unique perpendicular to # at P , which is
guaranteed by’ Theorem 9-3. If b passes through A , it
1s the required perpendicular, If b does not pass
p through A , let a be the line parallel to b through
A which is guaranteed by Theorem 6-3.

a
_ia
L
£ 3
=
*E -
Then by Theorem 9-11, a 1s also perpendicular to 20 ,
and hence 1s the deaired line.




i

However we must still show that there is only one

 line through A which 18 perpendicular to 7Z2 .- To do

’ »thi;s , let a' be any line through A which is, perpen-
dicular to 2 . Then by Postulate 25, a' is parallel
to b . However, according to the Parallel Pastﬁlate,,ﬂf
there is only one line through A which is' pégéllél to’
.b . Hence a! Taﬁd a are the same line,-and our proof
{s.complete. o ;7 '
. £ v
.THEOREM 9-14. There 1is a unique plane parallel to a given
# - - plane through a given point.

Proof:\ﬁet Z be the given plane and let L be the
glven point. Then there is a unique line ,5 which passes
through L and 1s perpendicular to 2 . Let - be the

' plane which is perpendicular to A at L . Then by

Theorem 9-9, L 13 parallel to 7” . Moreover, there can
be no other plane through L parallel to /2 . 1In fact,
if o 1is any plane through L parallel to .2 , then by
Theorem 9-10, o€’ 1s perpendicular to .£ . But by |
Postulate @,— there 18 exactly one plane perpendicular to
a given point. Hence & ahd «Z are the
same, plane, and our proof 1s complete.

a given line at

a¥
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THEOREM 9-15. If tﬂn planea are each parallel to a third

plane, they are parallel to each other, =

Proof: Let ?5 and F be two planes each of which
is parallel to a third plane & . 1et L be a line +
perpendicular to E?F . Theneapy Theorem 9-10, géi is also
perpendicular to /# and A& . Since # and & are both
_péfpendieular to sii , then by Theorem 9-9 they 'are

Kpara;;elg as asserted.

Notice the remarks that parallellism for lines and
parallelism for planes are equivalence relations: they
havé the the reflexive, symmetric, and transitive k
properties. This feature is one persuasive argument in
favor of adopting the convention that a line or a“plane
iz parallel to itself.

THEOREM 9-17. All segments which are perpendicular to
' each of two distinct pafallél planes and have their .
endpoints in the planes’ have the same length.

Proof: Let A and A& be stwa,:di?stir;ct. parallel
~planes. Let the points P, and P, in / and the points

Ry and R, 1in A2 be such that each of the distinct
segments P ,ﬁ and PERE 1s perpendicular to each of the

planes * a.ncl P = (Theorem 9-10).°

473 b I
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By Postulate 25, the two lines g??ﬁgi and‘§§z§§i are -
parallel; hence they lie in the same plane, say o . By
Theorem 9-6 i?;?gi and‘*ﬁ;ﬁg are parallel. Therefore
P,P,R.R,, 18 a parallelogram (tn fact, it is a rectanglé):
and hence, by Theorem 6-6, PR, = PERE , as asserted. -

Although the theory of projections is important in

" engineering, particularly in drafting, it was deemed not

necessary to devote a section of the text to this particu-

‘lar concept. Instead, definitions of the projection of a

point Into a plane arid of the projection of a set of
points into a plane are stated in Eroblemléet 9-4, followed
by some problems based upon these concepts. It would be
well to precede the assignment of these problems with a
brief discugsign of this géometrical 1nterpretation of the
word projecti n. i

{ The conventiénal phrase is to project a point or
figure "onto" a plane rather than "into" a plane. We have
preferred "into," in order to be consistent with mathe-
matical usage in the theory of mappiﬁgs or tran'formationsg
A mapping 1 a ¢orrespondence which assaciates with each
point of a given set S a unique pcint of a set 3' . We
describe thls by saying that each point of § 1is "mapped

_into" 1ts associated point of S' and that S 1is ,pped

into" S' . We say S 1s "mapped onto" &' only when
the whole of 8' 1is involved, that is when each point of
- L~

39



3' 1s thelassociated peint of some point of s . Since

this distinction between "into" and "onto" is quite

firmly established in higher mathematics we thought it . -

wise to use the appropriate technical term "inte" even*at

thls elementary 1eve1.

Review Seetion 4-13 with the students to recall the
definition of a dihedral angle. Note that we cannot Just
speak of the union of two halfplanes, but that we must
include their common edge in the union. This is because
a halfplane does not contain its edge. Similarly, the
face of a dihedral angle is defiined, not as a halfplane,
but as the union of a halfplane and 1ts edge. (This 1s -
sometimes called a "closed" halfplane to emphasize that
the halfplane has been "closed up" by edjeining its
bounding line; in contrast, a halfplane in our sense is
called an "open" helfpleneh) Observe that the inter-
sectlon of the two faces 1s their common edge, Just as

the intersection of ‘the two sides of an (ordinary) angle ..

is thelr common endpeint ’ e

Illustrate dihedral englee by using the covers, or
two pages, of a book. From this phyeieel model, try to
glve the students a feeling for the relatlive size of
dihedral angles, bisection, perpendieﬁlerity of planes,
ete. o ' L
Suggeeted)definitione: Dihedral angles /A-PQ-B
and /A'-PQ-B' are vertical if A and A' are on
opposite sides of’iﬁgéféggg_ B and B' are on opposite
sldes q;fi?i?.

“The interior of dihedrelnaﬂgle /A-FPgaB consists of

&

all points which are on the same zide of 4 APQ as
B and are on the same side of plane BP® A . The

exterior of a dihedral angle consists of all points
which are not in the interior of the dihedral angle and
are not in the dihedral angle itself.

17
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THEOREM 9-20. If a line is perpendicular to a plane, then

the given plane.
-

Proof: Let QP be the line perpendicular to a glven
plane ;? at the p«::int P , and let ,{f be any plane con-
taining QP . Let “AB be the intersection of »< and & ;
and in Z let R be the line which is perpendicular to

B at P . Since QE is perpendicular to /A~ , the

P

line QKEE ia also perpendlcular to i§§k Hence, by
Theorem 9-2, the plane determined by QE nd i§§E 1s »
perpendicular to AE . Therefore LQPR 1s a plane angleg
0f the dlhedral angle AQEABER . Moreover, since i3§k is
perpendicular to the plane X , 1t follows that LQPR

is a right angle. Hence /Q-AB-R 1s a right dihedral
angleg and .2 is perpendicular to = , a3 asserted.

THEOREM 9-22. 1If two planes are perpendicular, then any
line perpendicular to one of the planes at a point on
their line of intersection lies in the other plane.

Proof: By hypothesis,
/"}"J_)?? intersecting in gﬁ‘:
and “AB" |7 at B on “CD . A
We are asked to prove that
“*AE" 1ies in the plane 7
In /7 , there is a line
iA‘EBE whilch is per‘pendicular
to “CD" at B . Then “A'B L% -
at B by Theorem 9-21.

Lo
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Aruitoxt provided by Eic:

o e e L - .
Therefore AB and A'B coincide by Theorem 9-3. Since

g - L e S -
A'B" 1lies in plane /7 , “AB 1lles in plane 27

Sections 9-6 through 9-9, concerning a three-
dimensional coordinate system are not consldered part of
the minimum course. . Inclusion of these sections in a
course for your gtudentg should depend upon the tinme avails
able, ftne degree Df success they enjoyed in studying
ChaptEP’B and the feeling for spatial relationships they
were able to develop 1n Section 9-1 %hrough 9-5.

Our treatment of a three-dimensional coordinate
system 1is brief, but not rigorous. Rather, it 1s an
extension of the QDEGEP%% of a two-dimensional coordinate
system as develaped in Chapter 8. We have tried to
1llugtrative diagramg; If your gtudentg are n@t Qapablé \
of doing all of the work, you might use the dlagrams and
charts in Section 9-6 as a basis for an informal discussion
of a coordinate system in space, omitting the remaining

sections,

Some claases may»be able to benefit only from

omitting the degcriptian of a 1ine or a plane by means of
equations. For classes of superlor students, not only are
all sections strongly recommended, but the treatment of
coordinates In space might well be extended.

)

This 1s the first time the students have encountered
a family of lines presented in set bullder notation.
Remind them that {[m: m || z-axis} reads "the set of
all lines m such that m 1s parallel to the z-axis.,"
Spend some time discussing with your students the pictorial
representation of the family of lines.ge

% develop with the
;Chaftsj A very

Ising diagrams or physical mode
students the concepts summarized in ) ,
helpful physical model can be made easil rom three pileces
of pegboard. If the pegboard 1s painted with green slate
paint and colored elastic 1s used for lines, the model is
effective ag well as attractive.  Such alds are also
avallable commercially. !

W77
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llustrative Test Items

Chapter 9

1. For each of the followlng, write + . if the statement
is true (tfue in gygfy case); ‘write O 1if ‘the state-

. -~ (a) Given P(ED -3) and P(S 5@) he
‘ length of FlPE is 54/?- R
,(b) 1If a line is perpendicular to each of two -
' _ distinet lines in a plane it is perpendicular
- to the plan§ !
(¢) Through a point in a piane only one plane can
be passed. :
(d) There are infinitely many lines perpendiaulaf
to a given line at a gilven paint on the line.
(e) Two distinct lines perpendicular to the same
plane. are coplanar.: ) . _
(f) Through a point on a line two distinct planés
can be passed perpendicular to the line.
(g) All points that are equidistant from the
endpointd of a glven segment are coplanar,
(h) 1In a three-dimensional coordinate system,
vy 0 1s an equation of the yz-plane.
(1) Given a plane -& ,,a line which 1s perpen-
dicular to a line in dfris perpendicular to gi;.
(3) 1r “*E" and plane éé are each perpendicular to
“FH" at point P , then —AD lies in plane & .
(k) If a plane intersects two other planes in
parallel lines, then the two planes are parallel.

]

(1) Two planes perpendicular to the same line are
parallel.
(m) If each of two planes 1s parallel to a line,
the planes are parallel to each other.
(n) The projection of a line into a plane 1is a line.
(0) Two lines are paralilel if they have no point in

COommorn.

g




(p) The length of the projection of @ segment into
a plane 13 less than the length bf\tne segment.
(a) Two lines parallel to the same plane are parallel
to each other. i .
(r) 1If two planes are each perpendicular to a third
plané; they are parallel to one ano%her,
(8) If a plane bisects a segment, every point of the
plane is equidistant from the ends of the )
segment. 7
(t) Through a point not in a plane there is éxactly
one line perpendicular to the plane.
(u) If plane éi is perpendicular to “i8” ana
“B"||cD", then E|™CT.
(v) A plane perpendicular to one of two perpen-
. : dicular planes 1s not petpéﬁdigular to the other
[ plane. : S ’
' (w) 1If piane 2 1is perpendiaula5\tp plane /7 and

AABC * 1ies in plane &% »ythen\the projection
_ of AABC into plane * is a segment.
(x) It is possible for the (degree) mefrsure of a
. - plane angle of an acute dihedral angle to be 90 .
~ (y) Given A(4,-3,0) and B(-2,-1,6) , the
coordinates of the midpoint of AB’ are
(1,-2,3) . '
. ' :(z) If 2 line is not perpendicular to a plane, then
each plane containing this line is not perpen-

dicular to the plane.’
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2. Given in this figure that

K| %E, @B uE,
HB | B, RB L"A%" and
5 | %E”.
(a) “BK  and “%F' deterﬁine A

& plane ABK . IE
BQ perpendiculaf to
plane ABK 7 C
(b) Do “*FE",*RE™ s~
all lie in plane KBQ ?
Why? ’
(c) There are at most

different planes deter-
mined by palrs of the
* gilven lines,
3. 1In the figure, plane ?_f‘A%EE
and plane & |iB".

(a) 1s Z || 22 wny?

(b) Plane &£ intersects
"2 and 2 in KT
and iﬁ?i; Peapéctively,
Is “WKT|1"GF™?  why?

(¢) If a 1line m is perpen-
dicular to WK and
intersects 'QE , what

L

kind of angles does m
make with fﬂ? Justify
your answer,

4. In this figure, plane &
bisects RQ and ﬁ‘L*FT_QE
Alsa RT = QT .. Ex¥plailn
why T 1lies in plane &E

e

™,




Points A, B, C, and
D are not coplanar.
AABC 18 l1sosceles
with AB = AC

ADBC 18 lsosceles
with DB = IC

F 1is the midpoint of
BC . In the figure at
least one segment 1s

perpendicular to a plane.
What segment? What plane?
Justify your answers.
Given: “XA"] £ at &
“F| Eat B. F is

a point on “GE . Are

X, A, B, F éaplanar?
State a theorem to support
your conclusion.

°
Given: EII@?Z
“%E"| & at A .
B 12 in é;g
"] E at D .

C 1s in - .
’

Prove: AC = BD .
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10.-

11.

this figure. : R

A

The following sets of lines (m) and planes (P)
are described in reference to a three-dimensional
coordinate system, having X, ¥, z-axes. Bﬁ palring
those on the left with those Qn ‘the flght match the
equivalent sets.

(8) (m:m |77 (r) (P:P | z-axis)

(b) {P:2Z || yz-plane} (s) {(m : m 1] xy-plane}
(c) [}§ Z || xy-plane} (t) (#P:# | y-axis)

(d) m %X (u) (P: 2] x-axis)

(e) (m : H“aET (v) (m:m | yz-plane)

(r) [;?: ;§|| xz-plane} (w) (m : m ]| xz-plane}

Find the point in which the line .m intersects the

xz-plane 1if

m= {(x, vy, z): x =2+ k ,y=14 -2k, z =3k,

k iz a real number}

=

Show that Q ABC 1s isosceles

f its vertices are
A( ;—: 5) H E(“E; '“i) C(E 3 ‘

»1)

Find an equation of the line in the Xy-plane which
1s the line of intersection of the Xy- plane and the
plane whose equation 1s 2x - y+2z=17,

O

(a) Given points M(6,-2,3) and N(-5,1,4) . Find
the coordinates of the midpoint P of WN .

(b) Given points A(2,0,-2) and B(x,-1,z) . Find
x and 2z , so that the midpoint of AB 1is the
same point P as in Part (a).

 Find an equation of the plane determined by the

points A(1,2,5) ; B(0,1,6) ; c(2,0,1)
V 15 the midpoint of edge " — T
RW of the cube shown in - v

|
A&

//
w

Prove, with or without

coordinates, that
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. Chapter 10
DIRECTED SEGMENTS AND VECTORS

10=1. Intrp@pg%ioﬂ.

This 18 an optilonal chapter and should be omltted
where the abllity level of the class or the lack of time
makes 1ts omlssion necessary. For this reason relatively
few geometrical theorems are proved and no new ones are
presented; ‘

The purpose of this chapter is to introduce the
student of above average ability to another mathematical
system, one which has wide application in physics and
engineering, as well as in mathematics. Moreover we feel
that the work in this chapter will help to solidify the
ideas of closure, commutativity, assoclativity, and the
other properties of real numbers.

The treatment of an entire set of directed line
segments as a single entity, called a vector, will probabiy.
Seem an unnecessary departure from the common notion of
directed line ségments belng vectors. However thils is the
modern concept and we belleve that the ideas stressed in
this chapter will make it easier for the student to proceed
tc?a mor® advanced study of vector analysis with relatively
little difficulty,

Some of the problems in the problem sets and in the
review set deal with the use of vectors in solving
‘certain problems of physlcs., The student does not need
an extensl background 1n physics to handle the problems.
It 1s sufficient that he knows that when two or more
forcés or velocities act on a body the resultant force or
~velocity can be found, by the rules of vector addition,
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10-2. Directed S nts.
10-2 Direc Segments

The main ideas of this eeetion are equivalence of
directed eegmente, addition of directed eegmente, end
multiplication of directed segments by real numbers. The
student 1s required to translate statements of geometric
relation into algebraic language.

. By this time equivalence relations, should be familiar
to the students, The fact that directed segment equivalence
is reflexive, symmetric and transitive enables us to
consider all dieeeted segments that are equivalent to @
glven directed segment as a set that 1s well defined. ' It
1s this fact that paves the way for the definition of a
vector in Section 3, '

As a matter of vocabulary, it 1s worth noting that

~ directed segments, which are often inaccurately referred

to slmply as vectors, are sometimes called bound ve'éere,
since in a sense they are "bound" to a particular point?
as origin., When this termlnology is used, the entitleE~
which we call vectors are then referred to as free vectors.
Since 1t 18 very convehient to be able to denote a veeter
(in our sense) by the symbol AB , we have introduced the

symbol (K;B) for a directed segment (or bound vector),

We have tried to stress that the addition of directed
segments 18 not commutative., This may be the students!
first encounter wlth non-commutative addition and, as
such, should not be "glossed" over., =

s

Y,
(

10-3. Vectors. |

The main topic of this section 1s the algebra of
veqéore as ordered pairs, [p,q] . The transition from
eoordinetee of polnts to components of vectors is a 1little
subtle and may present difficulty to the student, but
once the changeover is made, the algebraic properties are
easlly established,



10.

i

!Pr-apgérty 3 states W+ 0 =71 . In other words O
plays the role in vector addition comparable to O 1in the
addition of real numbers. Hence 0 1s often called the
identity element for veetail. addition, Similarly Property 4
indicates that each vector has an additive inverse.

Ir
If

—_
u,

u,

—

N
v,

(T

There 1s

H

Properties of Vectors

are vectors then W+ V is a vector,
W are any three vectors then

+V) + WU+ (V+W) .

a vector O such that for any u

—

u+0=u,

For every vector U there ig a vector =0 such that

ir

then

If

then

=
Hy

£}

—
y V

—
v

is

is

is

is

U+ (u) =0 .
are any two vectors then

u-+v=vs+u,

are any twg vectors and k 18 any scalar

k(W + V) = ki + kv .

e

any vector then ki =1 when k=1 ..

any vector and p,q are any two scalars

I

(p + Q) =pd + qu ,
any vector and p,q are any two scalars

&

p(qu) = (pa)u .

any vector and k 1a any scalar then

|xa| = |k| + =i .

#

e
(/4

g
O
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:  Obvlous from definition.

ﬁ‘
o
jo
[
o
2
|+

: If u=[(a,b] ,Ve=1[c,d], Ww=[e,f] , then

5
2
™)

(W+7V)+ W= (la,b] + [e,d]) + [e,f]

=[a+c,b+dl +[e,fl=[a+c+e, b+d+r]

(a,b] + [e + e, d + £] = [a,b] + ([c,d] + [e,f]) .
Proof of 3: Let u = [a,b] and O = [0,0] . Then
T +3 = [a,b] + (0,0] = [a,b] =% .

Proof of 4: Let U= [a,b] , & = [-a,-b] . Then |
o A

(
Proof of 5: Let W= [a,b] and ¥ = [¢,d] . Then

U +V =¢fg,p] + [e,d]
§[a+§;b+d]§[c+a;d+b]r
= [e,d] + [a,b]

—=

=V +710.
Proof of 6: ILet U = [a,b] and V = [¢c,d] . Then
. . - f -
k(@ + V) = k([a,b) + [e,d]) = k[a + ¢, b + d]

[k(a +¢) , k(b + d); :

[}

I

[ka + ke, kb + kd] = [ka,kb] + [ke,kd]

kla,b] + kle,d]

It

=

= Ki + kv .
Proof of 7: Let U = [a,b] . Then

Ku = kla,b] = [ka,kb]l. But'if k = 1 , then

[ka,kb] = [1 » 2, 1+ bl = [a,b] .
Proof of 8: let U = [a,b] . Then.

(p +a)u = (p +q)la,b] = [(vp + aq)a,(p + q)b]
= [pa + qa, pb + qb] = [pa,pb] + [qa,qb]

pla,b] + qla,b]

U

spﬁ+}§a§,

\



: Let U= [a,b] . Then

‘
o s,

Proof of .
VJ—"' o 7,
p(al) = p(qla,bl) = plqa,qb) = [pga,pqb]

= (pa)[a,b]
= (pa)u .
. Proof of 10: et W= [a,b] . Then /
ki = kla,b] = [ka,kb]
Thus |kd| = |[ka,kb]| =1
But k| - [d] = |k| -

10-4, The Two Fundamental Theorems,

702 Theorem 2. One point in this proof 1is the assertion

! that 1f ¥V =0 then k = 0 . The students may have
trouble fallcwing this and therefore we Buggest that the

2 followlng be discussed prior to the discussion of this
theorem, ' = -
If kv = ¢ VAT then k=o0.
& - ' -
‘ Proof: means kv = 0 = [0,0] also Vv 1is

some vector of the type [a,b] where, by hypothesis,
a and b are not both zero.

But KV = kl[a,b] = [ka,kb)
therefore  [ka,kb] = (0,0]
and i1t follows that k=0,
cidentally; the occurrence in thils proof of both

the zero vector, Q '» and the scalar quantity, o0,
should be earafullyfgated and the difference should be

made clear to the Etudent \\\%g o

ABTF
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10-5. Geometrical Application of Vectors.

706 This section has two main topiecs, The first ia that
vectérs can be manlpulated according to most of the usual
rules of algebra; the second is that certain problems of
elementary geometry can be solved by such manipulations.

Each of the examples 1s worked out as an isolated
problem. No hint is given about a general approach to
any type of problem., However, there is a general approach
which teachers may want to discuss. Each problem can be
solved by:

1. Choosing two dlrect%d line segments on non-parallel

iines. ‘
2., Expressing each of the other directed line

= '

10-6. The Scalar Product of Two Vectors.

709 The scalar product is often called the inner product
' or dot product, We chose the terminology scalar product
to emphasize that the result of this operation is a number
(or scalar). However, great care must be exercised so
that the student does not confuse the scalar product with
multiplication of a vector by a scalar,

To prevent a careless student from mistaking
a . T?, a scalar product of two vectors, for x - y , &
product of two numbers, we recommend that the dot not be
used for the product of two numbers, if there 1s a possi-
bility of confusion, -

The symbol O was used to represent the zero vector.
students should be cautioned not to use the single letter
0 to name a vector as 1t may lead to unnecessary errors,
Moreover it should be made quite clear that -1f we have
U+ VvV =0, the result is a scalar and is different from

e
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Proof of Property 3.

Let U = [a,b] , W= [c,d] , ‘

[a,b] - [kcgkd}
= akc + bkd = (ki)W
= k(ac + bd)

¢ = k(W ¢ W) .

Proof of Property 4.

Ui

Let U = [a,b]

’Ll; !%’T [a;b] * [ajb]

a2 4 b°

a2
] -

The scalar product enriches vector algebra to ﬁhe
point that 1t ean be used to prove many more geometric
theoreme, 1In Problem 19 of the sample test questilons the
ptudent is :asked to prove the diagonals of & rhombus are
perpendicular to one another. The teacher may wish to
present this in clams to show an application of the scalar
pfaduct to geometric proofs. |

_The student should be made aware of the fact that
the szﬁiﬁr product does not obey the law of closure, He
might well. be asked tg glve other examples which do not
obey the %gw of closure, Some examples of thils are:

.

The product of two negative numbers 1s not in
the set of negative numbers. ‘

2. The product of two irrationals 1s not always
irrational, '

3. The region formed by two triangles with a side
in common is not always a ifiangular—region.

¥
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Leaving the world of mathematics we have,
Lli

Combining two gases does not always produce a
gas. Hydrogen and oxygen may combine to form
water.

o
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Illustrative ;‘gét 1t§ms for Chapter 10 ,

seesee-eo -1 - If A, B, C- are three collinear points such that.
' "B is between A, and C , 1ist all the directed

line segnents they determine.

2. If A, B, C are the points (4,2) , (3,7) , (-2, 1)
reapectimelyplist all the vectors represented by
the directed Eementa Joining these points.

3. If & 1s [3,7] and B 1s [-2,1] find

(a) 2+70.

(b) 2 -0

(c) 2% .
" (a) 1g| .

(e) |2 t?I

L. If ABCD 1s a parallelogram, as indicated below,

A _ B
o —%
(a) (KB) = 2
(p) (A,D) = 2

() (DJA) =2
- (a) (ﬁ)w%(ﬁ)é?,
«(e) (D,€) + (T;B) + (B,R)

?

5. What 18 the negative of [-2,3] 7
What is the vector T such that for all v we
have T + ? = fr‘ ? :
7. 1f & =1(2,1], b =(3,6] , = [-1,-3], find
(a) T+
I

=
c .
(b) |@+0B+7¢ .

kg1
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Determine x and y 8o that

(a) {5,6] + [x,y] = [3,2]

(v) [-2,3]1 + [x,y] = [4,5)
(e) [5,2} + [x,y] = [0,0] .
(@) [9,7) + [x,¥] = [14,-3)
(é) [’6:‘21 + [3;: ] = [ 5 ‘2]

 Determine x and’ ¥ 8o that

x[2,-3] + y(3,-1] = {5,3] ..
If a=[2,1] and © = [3;5] , find a + b .
(K,

If AM = MB , must ) £ (M,B) 2

Explain your anawer.

. —
Ir AM MB , must |AM| = |MB] 2.

- Explﬁin yauf answer.

.

If a

(3,4] and © = (6,81 ,
(a) »express ﬁ? in terms of ET;
(b) express & 1in terms of -b

Determine x and y 80 that

(5,6] + [-2,3] + [x,y] = [6,4]

What condltilons must hold for two directed line
segments to be equlvalent?

Show that ©P(0,0) , Q(6,8) , R(15,18) and 5(9,10)

are the verfices of a paﬁailelagr&m.

. Show that P(2,1) , Q(5,3) , R(3,6) , 5(0,4) are

the vertlces of a rectangle.

Show that the line determined by P(6,6) and
Q(8,0) 1is perpendicular to the line determined by
R(3,5) and 5(9,7)

Prove that the dlagonals of a rhombus are perpen-
dicular to each other,

If ABC 1is a trianglé and D , E are points on
AE and AC respectively such that AD = §AB and
AE §AC , prove that TE 1s parallel to BE and

DE :-B-BC

»
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A Héfg on Chapters 11 and 12

There are several adaptatians that the teacher might’
make in uaing the present text without loss of cantinuity'
of subject matter. Four alternate plans are outlined -
briefly for consideration by the teacher. Fach téacher
‘should study the plans carefully and decide which one, iff
any, 1s more deairable than the present sequence of the '
text for use with a particular class,

Plan A |

£
(L>2]

Sections 12-1 through 12-5 , Sections 12-1 through 12-5 ,
1 1

11-1 through 11-12, .11-1 through 11-8 ,
12-6 through 12-9 . 12-6 through 12-9 ,
' 11-9 through l1912}2;3
Plan C Plan D
Sections 11-1 through 11-3 , Sections 11-1 through 11-8 ,

1
2-1 through 12-9 ,

-1 through 12!5 ,
1-9 throuéﬁ‘il=l§.

1
1
11-4% through 11-8 ,
6 through 12-9 ,
s 11-9 through 11-12,

Any one of the above plans may be modified by placing
Section 11-3 immediately before Section.11-8.

Teachers who are pressed for time should cansidér‘
"~ omitting entirely the sections (11-6 through 11-9) on
polyhedrons, to gain time for Chapter 12. 1In any case,
Sectlons 12-1 througﬁ 12-5 should not be omitted,

-~
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_ “Chapter 11
POTYGONS AND POLYHEDRONS

- . This chapter treats the ¢ ional subject matter
.of polygons and polyhedrons. The viewpaint is essentially.
that of Eueclid, and many of the theorems. in. this chapter
have pracfa similar to the praofs of corresponding
theargms in other geometry texts, However, ‘there- are
" ' " several differences. Pirst, the intraductign of the term
polygonal-region; and secand the study of area by
postulating the properties of area rather than by deriving
the prcpeéties from a definiticn'af area based on the
measurement process. Actually both of ﬁhésé treatments
are 1lmplicit in the conventional treatment. We have only
brought them to the surface, sharpened, and clarified
them. After this basis is laid, our methoda of proof are
simple and ccnvent;onal However, the placement of topics
and the order of théoreﬁgihay differ from the conventional

SéQuEﬂEE;

=

In the work with polygonal- regions we are restricting
aurselves to the relatively simple case of a polygonal-
region whose boundary is rectilinear, that 1s, whose
boundary 1is é union of segments. Our theory for
polygonal-regions will be extended in a later chapter to
include more general configurations such as cilrcles.

Althoug' we have previously defined polygon, convex
polygon, an: #e interior of a convex polygon (see
Section 4-12 of text), difficulty arises when an attempt
vis made to define the interior of a n@ﬂ—canveIApclygong
Since any triangle is a convex polygon, our definition of
‘polygonal-region avolds this difficulty. We merely take
the simplest and most basic type of region, the.
triangular-region, and use 1t as a buildlng block to
define a polygonal-region. .

N
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~You should also note that we have not defined raglan
as a aingla ward, andhthat our aaa of tﬁa term palygonal—
ragian diffara from the usual mathematical uaaga which
requirea that a region be aannectad or "appear in ‘one x
plece." Since our definition of a polygonal-region daaa .
not require aoﬁﬁaation, we avold confusion by'plaaing a

xhyphan betwaan the words palyganal and regian_ )
q
Thaifqllqwing plctures 1lluatrata three polygonal-

reglons which represent:

(1) Tha union of two triangular=ragioﬁa MWith no painta
in t:ammon, :

(2) The union of two triangular-regions with one point
in common; and . .

(3) The union of two triangular-regions with a segment

=+

in common,

J——

é galygan. Thia ahauld cause no traabla; it aimply means
iﬁ that our theory has broader coverage than the usual mathe-
™~ matical use of the word,

by | ¥
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-of polygons in the same chapter.

In'many'gecmetry texts the theorem and corollaries
pertgining to the sum of the measures of the angles of éf
palygaﬂ follow Theorem 6-9. We did not include this ma-
terial in Ghapter 6 ‘because our primary ijeetive in .
Chgpters l - 7 was to develop a sequence ‘of theorems
essential to the establishment of the Pythagﬂrean ‘Theorem,

‘which would permit us to make early use of a coordinate
. sygtem in a plane. This was not essential taathat:davgl—

opment. Simce the theorem on the sum of the measures of
the angles of a polygon and the subject of areas refguire

an understanding of palygcnal—reéiﬁnsj we achlieve unity

of subject matter by treating polygonal-regions, the sum 18
of the measures of the angles of a'Pélygan; and the area

Prior to Theorem 11-1, there 12 a set of exploratory

" problems which should help the students understand the

proof of this theorem. ' The answers to these problems are

given below:

Number of | Number of | Number of | Sum of measures of
gldes of diagonals triangular angles 'of the
convex | from A reglons polygon
polygon _ . B
L 1 2 2 x 180 = 360
5 2 3 3 x 180 = 540
6 3 b 4 %x-180 = 720
7 4 5 5 x 180 = 900
8 5 6 6 x 180 = 1080
n n-3 n- 2 (n - 2) 180

S@metimés in a mathematical discussion we give an
explicilt definition of area for a certailn type of figure.
F@f example, the area of a rectangle is the number of unit
squares into which the correapondlng rectangllar-region
can be separated. This is a difficult thing to do in
general terms for a wide variety of figures. Thus the
suggested definition of area of a) rectangle (rectangular-
region) 1s applicable only if the rectangle has sides
whose lengths are integers. Literally how many unit
squares are contalned in a rectangular reglon whoae

kg7 Gi



dimengiana are § ‘and gs . The answer is none! Ciearly
the’ suggegted defipitian must be modified for a rectangle
With ratinnal dimensions. To farmulate a suitable
definitfan When the dimensians are 1rraticnal numbers

- for exsmp;e *ﬁ? and. fﬁ? 518 still more complicated and
' 1nvgivga thé*tOﬂEEpf of limits. Furthermore, it would

alsa be neeessary to define the area concept for trlaﬂgies,
quadrilaterals, circles, . and so on. ‘The complete study

- of area along these lines involves 1nﬁégra1 calculus and

finds- 1ts culmination in the branch of mathematics called
the Theory of Measure. .

Since this i3 too scphisticatei an appraach for our
purposes, we do n@t attempt to give an expliclt deflinition
of a polygonal- region by means of a measurement process
using unit squares. Rather we study area in terms of its
basic properties as stated in Postulates 26, 27, 28, 29.
Dngthe baslis of these postulates we prove the familiar
formula for the area of a triangle. Consequently wé get
an explicit procedure for obtalning areas of trilangles and

of polygonal-regions in general.
¥

Some ;gmarks on the §95§?;§E§5* Observe that our
treatment of area is simllar to that for distance and the
measure of angles. Instead of giving an exPlicit
definition of area (or distance, or angle measure) by
means of a measurement process, we postulate 1ts basic
properties which are intuitively familiar from study of

the measurement process,

Postulate 26 is analogous to Postulate 10 for
distance. The "given polygonal-region" plays the same
role as the unit-palr. However, the difference lies in
the fact that in area we soon restricted ourselves to one
unit of area, which does not necessitate aﬁgadditional
postulate for a change of the unit of area. Postulate 26
can also be considered an analog of Postulate 16 for

angles.
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Postulate 27 is analogous to the definitians gf

':bétHEEﬂﬂEEE for points on a line and betweenness for

anglés It is a precise fanmulaticﬁ, for the study of 5‘ T

‘area, of the vague statement "The whole 1s the sum of its.

parts This statement is open to several cbjeetions

It seems. ta mean that the measure of a flgure 1is the sum
of tHe measures of its parts. Even in this form it is =
not acceptable, since the terms "figuré" and "part" need
to be sharpened in this context, and it permits the "parts"
to.overlap. Postulate 27 makes clear that the "flgures
are to be polygonal—regions, the "measures are areas, and.
that.the "parts" are td be palyggnal-regians whose union
1s the "whole" and which do not overlap.

In Chapter 3 we Hefined congruence of segments in'"
terms of segments having the same length. Here, our
aituation 1is different , We alreadv have the notions of
éongfuenee and we try to make our idea of area come into
line with that of congruence.  Hence, we formulate
Postulate 28 which states if two triangles are congfuent,
then the triangular regions associated wlth them have. the

.sBame area wlth respect to any Fiven unit ‘of area.

These three postulates 3eém to glve the essential
properties of area, but they are not q&i%é complete, We
polnted out that Postulate 26 presupposes that a unit has
been chosen, but we have no way of determining such a
unit, that 1is, a polygonal-region whose area 1is unity.
For example, these postulates permit a rectangle of
dimensions 3 and 7 to have area unity.

Postulate 29 takes care of this by guaranteeing that
& square whose edge has length 1 shall have area 1
In addition, Postulate 29 gives us an important basis for
further reasoning by assuﬁing the formula for the area of
a rect ngle,

-ice we are introducing a block of postulates

concerning area, this may be a good time to remind your
students of the significance and purpose of postulates.



@

‘They are precise farmulatibns af the basic 1ntuitive

judgments suggésted by experience, from which we, derive ,

" more complex principles by deductive réaanning

To make Qpe postulates on area more.significant for
the Etudents‘ discuss the measuring process for area con-
G§etely,%uging,§imple filgures llke rectangles or right
triangles with integral or rational dimensions. Have them
subdivide regions into congruent unit squares, 86 that the
students get the ldea that every "figure" has a uniquely
determined area number,é&@hen present the postulates as...
simple properties of the area number which can be verified
cdncretely in diagrams

The problems in chtian 11=4 émphasise the relations
that exist whén a set “of rectangles have equal bases,
equal altitudes, or equal areas. They are introduced early
in the study of area and serve as exploratory problems for

the development of the theorems in Sections 11-6 and 11-7.°°

Similar exploratory problems should be included in dally
rev;gws along with the development of the theorems in
Sest;gn 11-5.

The formulas for the area of trlangles and quadri-
laterals are dévelopéﬂ in juniar high achool mathématiég
Etudentsg We devalopathem in rapid sequence 80 that the
thread of continuityqis maintalned in proceeding from one
theorem to another. Teachers of superior students will

probably want to teach these theorems in a single day.

Teachers who need to use a slower pace will find the
'prabiéms in the Problem Set organized in a sequence which

will make canvenient day by day assigmnments relating to
any specific theorem or combination of theorems., However,
1t would be helpful to students in these classes if they
would reread the sectlion after all formulags have been
developed in order that they can more fully appreclate
the continuocus thread of development.



‘Large cardboard models of triangles and quadrilaterals
should be heipfﬁl in demonstrating the'varicus‘thearems in
this section. Use the figures accompanying the theorems
igs patterns in constructing the models.-

After postulating the area of a rectangle we proceed
to develop our formulas fcr areas in the fallcwing manner-
right triangle, triangle, rhambus, parallelogram and
.trapezoid. The fight triangle permits us to work with any
_rtriangle. This in turp glves us the machinery to :find the
area of any polYgonal reglon by chgpping it up into a

areas of these triangular regions. The proofs of these
theorems 1llustrate the fact that Postulate 27 is a sort
of separation theorem, in which a given region R 1is the
union of the regioné‘ R1 and RE .

The problems in Problem Set 11-4 following the
pogtulate for the area of a rectangle give puplls early
- opportunity to explore the relations that exist for sets
of rectangles with equal bases, equal altitude, and equal
area. Studepts should be given similar numerical
exerclises for the triangle and the parallelogram, and
queations should be asked whiech lead students to make the
generallzations which are proved as theorems in Section
11-6. Visual aids such as sets, of cardboard triangles
with equal bases, egual altitudéa,@and equal areas should
help students understand these ¥éTations.

Some of the problems in Problem Set 11-4 deal with
similar rectangles. A procedure similar to that used for
developing the generalizations in Section 11-6 should be
used in developing the generalizations in Section 11-7.
By means of student drawings and informal discussions
students should come to the following understandings;l
(1) Corresponding linear measurements of simillar
polygons have the same ratio, and (2) Corresponding areas
of similar polygons have the same ratlio as the squares of
any two corresponding linear measures.

Y E
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In conventional texte the area of a regﬁlar‘pélygon
T deveiaped An the chapter on circles. . In order to unify
thg work on area of palygona, we include it at thia time.
. Hence_ our definitions of center, radius, and apothem must
be independent of inscribed and circumscribed circles.
Theorem 11-8 serves as.a basis for these definitions. .

* The work in the remainder of the chapter 18 informal
in nature. Models, experiments, and exploratory problems
- serve as the basis for student discovery of many important
theorems. By this time students should realize that this
ias not a part of our formal development of geometry, but
an informal extension of two dimensional concepts into
three dimensional space, Students shauld be encouraged

to make models of the regular polyhedrons in studying
Euler'!s famous formula and Theorem 11-19,
The exploratory problems 11‘1 Section 11-10 help the
student to diacover the 1deas embodied in Theorems 11-17
4 11-18. 'ﬂ'xey also help the student to viasualize the

" 2. Yes; yes; yes; no; the vertex would lie in the
plane of the determining polygon.

3. No, same reason as Problem 2,
4, No, same reason as Problem 2. )
5. Less than 360 . ‘
6. Yes.,
7. Yes.
8. No. _
a,

- _H‘
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9. They exhibit a correspondence such that the corre-
sponding face angles are congruent, but they are
~ arranged in "reverse" order. Common examples of
symmetrical models in the physical world are a pair
of shoes, g palr of gloves, and the reverse plan

of a house, . —

16. No; yesi

Theorems 11-17 and 11-18 are interesting to students,
and the proofs of the theorems are easy-tc demonatrate to
the class when large physical models are used in the
demonstration. However, the notation in writing these
proofs becomes very involved. For this reason the proofs
are omitted from the text. A sketch of the proof of each
1s included in the Commentary for teachers who wish to use
them in class demonstrations.

Before the details of the Proof of Theorem 11-17
can be supplied, you will need two theorems in order to
establish the following property for triangles: In AVBH

/md AVGH , if VB = VG and BH > GH , then

3

m LEGH >m /GVH . These two theorems will be designated
as Thearem 11~ ITA and Theorem 11 =17B. - However, many
teachers may wish to do only Theorem 11-17B in an informal
manner and thus avold a break in the continuity of the
subject matter.

/ 5030 /"



Prisms and pyramids are introduced and problems for
finding the area of the lateral surface and the area of
. 7 the total surface are iﬁeléded. The volume of prisms and
- pyramids ia_giSGussad iﬁ”tﬂe apgendix.= Iﬁ”ﬁﬁfking‘with!
prisms, pyramida, and frustums, teachers will find that
large models similar to thode plctured in the text will
be useful in demonstrating theorems and explaining
" problems in the problem set" These models can easlly be
constructed from various media such as D-stix, balsa wood,
" pleces of wire, and cardbaaﬁg

Wy

-The answers to the experiment in Section 11-11 are:
%

1. Perlimeter; base; lateral edge; the perimeter of
\\ - the base; the length of a lateral edge.

2. Yes; the lateral area 13 the sum of the areas
of the parallelograms, each of which has a base

i . equal to a lateral edge and the sum of whose
-7 altitudes 1s RS ; right section.
Theorem 11-17A., If two sildes Dfsone trlangle are
_ gqualiféééégfi;élygfc two sldes of another triangle, but
v /}he measures of the included angles are unequal, then the
E - /sides opposlte the unequal anglés‘are unequal in the same

-order. P
P
E’;r' of: We are given AABC and ADEF with AB = DE ;
AC =DF ; and m LEAC >m éD . We are required to prove
B > E ‘

F . ,

m
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Consider AF' s0 that m /BAF} = m /EDF and let
AF' = DF = AC . Then ABAF' ¥ “AEDF by S.A.S. and
BF' = EF ,

¢ The blsector of /F'AC intersects BC at ¢ .
Then BG + GC = BC', and AAGF ¥ AAGC” by S.A.S.

Therefore, F'G = CG@ .
But BG + GF' > BF' by the Triangle Inequality
Theorem.

Therefore, BG + GC > EG ; and BC > EF .

Theorem 11-17B. If two sides of one triangle are
> equal respectively to two sides of another, but the third
s8ldes are unequal, then the measures of the angles
opposite the unequal sides are unequal in the same order.

Proof: We are given AABC and AEDF with AB = DE ;
AC =DF, and BC >EF . We are required to prove that

méA}méD.
T D

BL— — \c o F

We will use the indirect method to prove m /A >m /D,

m

The p@ssibllities'are{
e
(1) m/A=m/D; (2) m/A<m/D; (B)méA}m‘f_{D.

_ If g /A=m /D, then AABC ¥ ADEF , and BC = EF
o But BC # EF . Therefore m/A>m /D

If m /A <m /D, then by the previous theorem

Eé < EF . But BC 1s not less than EF , and hence
m /A 1s not less than m /D .

Therefore, m /A >m /D .

(;.J
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Aruitoxt provided by Eic:

» ok,

)

Tﬁea;em 11-17. The sum of the measures of any two

face angles of a trihedral angle 1is greater than the

We give only a sketch of the proof of this theorem.

Let the glven trihedral angle be

/V - ABC

Suppose that

[AVC has the greatest measure of any of the three face
v

angles. If we can showW that

m /AVB + m /BVC > m /AVC

~ then the theorem 1s proved.

Why?

L]

In the interior of A}VC , conslider the point G suc

that m /AVG = m /AVB and VG = VB .

we conclude that AG = AB . Let

of plane ABG and ray

.

Since AAVG

i

h
AAVB ,

H be the 1lntersection

Then BH > GH

The next

step 1s to show that m /BVH > m /GVH , and finally we
conclude that m /AVB + m /BVC > m JAVC .

Theorem 11-18. The sum of the measures of the face

angles of any convex polyhedral angle 13 less than 360 .

Proof: We are given polyhedral 4V;E1P§P3 ces

+£m [PoVPg + o+

We are required to prove
m /P VP, < 360

5q6¢

<

P
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Aruitoxt provided by Eic:

Let, agpléne intersect the faces of the polyhedral

angle to form section @Q,Q,Q5...Q . Take a péint 'O in
the interior of QQ,Q4...Q, and draw segments from

to each of the vertices of the pélygon.

0

These segments

form with the sides of the polygon n triangles with a
common vertex O , We will designate these triangles as

the "0 triangles." Therefore, the sum of the measures of

the angles of the "O triangles" 1s 180n

We will designate the triangles wlth vertex
There are n "V triangles.'

1

the "V triangles.'

the sum of the measures of the angles of the "V

is 180n .

In trihedral /Q, - Q VQ,, m L9Q4V + m [VQQ, > m /Q.Q,Q,

te.

Therefore, the sum of the measures of the base angles
B

of the "V triangles" is

&

Ztriangles

1

“ measures of the base angles of the "0 triangles,"

v

reater than the sum of the

the sum of the measures of the vertex angles of the

as

Hence

In trihedral /Q, - QVQy, m /QQV + m [VQ,Qy > m /879,04
e ' B )

and

"V triahgles" 1s less than the sum of the measures of

o 1
=

the vertex angles of the "O -triangl

;oW

But the sum of the measures of the v

the "0 " triangles" 1s 360 .

rtex

W
i

a

n

zle

=]

s of

FaE
Therefore, the sum of the measures of the vertex

angles of the "V triangles" 1s less than

I . - R
m /P{VP, + m [PVPy + ...+ m [P VP

-

The volume of prisms and pyramids is

the appendix.

W
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Illustrative Test Items for Chapter 11

A. Measure of the Angles of a Polygon.

Each of the questions or incomplete statements in
1 - 12 is fo%lcwed by three or four suggested answers,
Choose the answer you consider correct

1. The measure of each interior angle of a regular
octagon is: (a) 120, (b) 108 , (¢) 135,

(d) 45 .
If the sum of the measures of the interior
angles of a polygon is 720 , the number of
sides of the polygon is: (a) 8 , (b) 6,
N (¢) 5, (d) &

3. If the measure of each interior angle of a

(s

polygon is 165 , the number of sides of the
polygon is: (a) 10, (b) 12, (¢) 15,
(a) 24

Jui]

4, If the measure of each exterior angle of a
regular polygon 1is x', the number of aldes of

the polygon is: (a) !%2 , (b) 18o(x - 2) ,

(o) 2BOx-2) (q) 180 - 380

The sum of the measures of the interior angles

W

of a polygon of nine sides 1s: (a) 1620 ,
(b) 360, (¢) 1080 , (d) 1260 .

6. 1If a regular polygon has ten sides, the measure
of each exterior angle is: (a) 36 , (b) 144 ,
(¢) 45, (a) 135 .

7. If the sum of the measures of the interlor angles
of a polygon is 1620 , the number ofk sides Jf
the polygon is: (a) 7, (b) 9, (¢) 11,
(a) 13

L
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8. If the sum of the measures of é%gen angles of
an octagon 1s 980 , the meadurée of the eighth

angle is; (a) 135 ,-(b) 140 , (e) 100

(a) 1225 .

9. Consider a set of polygons of n sides., As n
1s replaced by greater integers, the sum of the
measures of the interlor angles: (a) increases,

(b) decreases, (c) remains the same.
’-if

10. Consider a set of polygons of n sides. As a
1s replaced by greater integers, the sum of ti
measures of the exterior angles: (a) increases,

(b) decreases, (c) remains the same

11l. Consider a set of regulsv po:ygons of n sides,
As n 1s replaced by greater integers, the
measure of each exterior angle: (a) increases,

(b) decreases, (c) remains the same.

Consider a set of regular polygons of n sides.

—
g

As n 1s replaced by greater integers, the
measure pf each interior angle: (a) increases,
(b) decreases, (c) reiains the same. -

B. Area Formulas.,

1. The perimeter of a square 1s 20 . Find its

area.

2. The area of a square is n .  Find 1lts side,.

figure 1n terms of

3. 'Find the area of the T—'v
7 7 b
the lengths indicated. {

T

4. The base of a rectangle is three times as long .
as the altitude. The area 1s 147 square
inches. Find the base and the altitude.

5. The area of a triangle is 72 . If one sailde
is 12 , what i1s the altitude to that side?

ERIC

Aruitoxt provided by Eic:
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Aruitoxt provided by Eic:

In the figure WY = XY
and WZ = XZ . WX 8
and YZ = 12 . Find
the area of WZXY .

R3TV 13 a parallelogram.
If the lower case letters
in the drawing represent

lengfhs, give the area Y. __
of:

(b) ASTU .

/
(¢) Quadrilateral VRUT .

- '
Show how a formula for

the area of a trapezoid
may be obtalned from

In surveying field ABCD
shown here a surveyor laid
off north and south line
dﬁgﬁithrcugh B and then D
located the east and west
lines *ﬁkfﬁp and “AG".
He found that CE = 6 rods,
DF = 14 rods, AG = 12 rods,

|
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C. Comparison of Areas.

1.

(]

D. Miscellaneous Problems. M S R

sect at 0O .

Préve : Area AAQD

Given: ABCD 1s a
trapezoid. Dlagonals
AC and BD inter-

= Area ABOC

In this figureg PQRS 13 a parallelogram with
PT=TQ and MS = SR . In (a) through (e)
below compare the areas of the two figures
listed.

(a) Parallelogram SRQP . e
. and ASQR . L i
(b) Parallelogram SRQP R

and AMTR . ’
(¢) APNS and AMIR .
(d) ASQR and ASPR .
(e) AMTR and ARQT .

1.

ABCD 18 a trapezoid, D c
CD=1 and AB = 5
What 1s the area of
the trapezoid?
4590 45°

What 1s the area




Lo

o

ABCD 18 a rhombus with
AC = 24 and AB = 32 .

(a) Compute its area.
(b) Compute the length
of the altitude to

e

Find the area of a triangle whose sides are 9" ,

12", and 18" .

o

B

ABCD a parallelogram with altitude TDE .

Find the area of the parallelogram if:
£1

, R
(a) DE 5 and AB =65 . .
(b) AB =10, AD = 4 , i//ﬂ N ///’
i ) o i
and m /A 30 . /| )
ATE

Find the area of an 1sosceles triangle which

[
1]

It

N |\

has congruent sides of length 8 and base

‘angles of 30° .

c
@

1.

2

ERIC

Aruitoxt provided by Eic:

E. Coordinates. (

Iy
The coordinates of the vertices of a trigngle
are: A(-2,-3) , B(4,5) , and C(-%,1) . Find
the area of the triangle.
,‘I
The coordinates of the vertices of a quadri-
lateral are: A(3,2) , B(0,6) , c(-3,2) and
D(0,-2) .
(a) What 1is the name of the quadrilateral?
Explain.

(b Find the area of the quadrilateral.

L

he coordinates of the vertices of ARST are
5,1) , (-3,-3) , and (4,6) . Find the area

of ARST . Hint: The area can be found by

subtracting aréas of right trilangles from the

Ny

g

area of a rectangle.

R
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I
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F. Area

Prove the area of AABC 1is
a(t - 8) +b(r - t) +c(s - 1)
L 5 _C(8 -

where A = (a,r) , B = (b,s) ,
and C = (c,t) . Hing:
Find three trapezoids in
the figure.

Relations.

L]

i

ERIC

Aruitoxt provided by Eic:

Two similar polygons have corresponding sides
of lengths 5 and 9 . The area of the larger
is 567 . What 1s the area of the smaller?

If the ratio of the bases of two parallelograms
1s 2:3 , and the ratio of the corresponding
altitudes 18 3:2 , the ratio of the areas 1=

Two trlangles have equal areas. If the ratilo
of the bases 1s 2 and 3 , then the ratio of
the corresponding altitudes is -

If the side of one square is double the side of
a glven square, the area of the square is
_the area of the given square,

If the silde of one square is double the ailde of
a glven square, the perimeter of the gquare is
~ the perimeter of the glven aquare

Two triangles have equal bases. If the ratio
of the altitudes 1s 2:3 , then the ratio of the

areas 1s .

If the area of a square is double the area of a
given square, then each side of the s3quare 1sa

_ a aide of the given square, -
513
*
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10.

What 1s the ratio of the areas of two similar
triangles whose bases are 3 inches and 4
inches? x inches and y 1inches?

A silde of one of two similar triangles is 5
times the corresponding slde of the other, If
the area of the first 1s 6 , what is the area
of the second?

In the figure if H 1is the midpoint of B&AF and
K 1s the midpolnt of
BB , the area of AABF

is how many ftimes as
great as the area of H %%E‘%k
AAKH ? If the area ~.
of AABF 1is 15, A K B
find the area of AAKH .

The area of the larger of two similar triangles

iz 9 times the area of the smaller. A slde

of the larger 1s how magy times the corresponding

slde of the smaller?

i3

The areas of two similar trilangles are 225 24g.
in. and 36 sq. in. Find the base of the
smaller if the base of the larger 13 20 1nches.

G. Regular Polygons. ?

O

ERIC

Aruitoxt provided by Eic:

Find the area of a regular polygon if the
perimeter of the polygon is 36 1inches and
the apothem is 343 inches.

The apothems of two equilateaal triangles are
3 and 7 . What is the ratfo of the sides?
the perimetera? the areas? f{f

Find the area of a regular hexagon 1f the

radius of the hexagon is 10 . P

514
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Aruitoxt provided by Eic:

10.

What 1s the ratio of the areas of two similar
triangles whose bases are 3 inches and 4
inches? x inches and y 1inches?

A silde of one of two similar triangles is 5
times the corresponding slde of the other, If
the area of the first 1s 6 , what is the area
of the second?

In the figure if H 1is the midpoint of B&AF and
K 1s the midpolnt of
BB , the area of AABF
is how many ftimes as
great as the area of H %%E‘%k
AAKH ? If the area ~.
of AABF 1s 15, A K B
find the area of AAKH .

The area of the larger of two similar triangles

iz 9 times the area of the smaller. A slde

of the larger is how magy times the corresponding
glde of the smaller?

o]

The areas of two similar triangles are 225 q.
in. and 36 sq. in. Find the base of the

smaller if the base of the larger 13 20 1nches.

Regular Polygons. b

1.

]
-

Find the area of a regular polygon if the
perimeter of the polygon is 36 1inches and
the apothem is 343 inches.

The apothems of two equilateaal triangles are
3 and 7 . What is the ratfo of the sideiigf
the perimetera? the areas?

Find the area of a regular hexagon 1f the

radius of the hexagon is 10 . P

514
!3{ ~,‘

W]



7. Find the area of the lateral surface
of the frustum of a regular
pentagonal pyramid. Each
edge of the upper base 18
12 and each edge of the
lower base is 14 . The
altitu@igsf one of the
faces &f the frustum 1s
15 . Find the area of
the lateral surface.

8. The edges of one cube are double those of
another. i

(a) What 1s the ratio of the sums of thelr

-

(b) What 1s the ratio of their total surface

areas?

a
b
pout

o
L

O
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Aruitoxt provided by Eic:
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- Chapter 12
CIRCLES AND SPHERES

The depth of treatment of the material of this chapter
must depend upon factors which include the calliber of
class and the time remalning in the ﬂchool year. K Generally
speaking, there are three levels of treatment: (a) the
minimal, which strives only for basic appreciation of the
relations between angles and arcs: of tangents, chords,
and secants; and of the measures of sector area and arc
length; (b) the average treatment, which adds to the
minimal some deeper analysls of the above relatlons by usze
of coordinates; and (c) the thorough treatment, which
involves coﬂsidering every pr@blem in the chapter The

nothing méreg the th@rough treatment iz strongly recammendi
! [ _ B ¢ )
ed for highéability classesd, ’

Dbaerve that in the proof of Thearem 12-1 we do not
assert that [(x,y,g) xe + y2 + z° = p° and z = 0] is
the same set of points as {(x,y): x° + yg = rE] . To—
make such an assertion would be to say that a set of ’
ordered triples of numbers is a set of ordered pairs of
numbers! It would be correct to say that the following

ma

two sets are equal:

{(%,y,2): x° + v© o+ 25 = r° and z = 0}

]
ke

~ 2
{(K;S‘,D); X +y =

and this 13, in fact, what we asserted when we "recognized"
. =3 (=
{(x,y,0): x° + yE = rS] to be the set of points in the
2 2
rY)

xy-plane given by [(x,y): x + ¥

The equations of circle and aphere developed 1n the:
text keep the centers at the origin. 1In the problem set
that follow , notably in Problems 4, 5, 18, equations of
circlea or spheres who;e centers are not at the origin
are introduced. This i1s not a difficult concept and
should be part of the average treatment.

[

LNl
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822 In the minimal treatment, Theorem 12-4 and its
corallaries may be asserted without proof. 1In the average
treatmEnt the teacher should lead the class through the
proof of one of the cases of £he theorem. All classes
shguld understand the proof of Theorem 12-=5,

fare)
MY
(%)

' Note 1n the proof of Theorem 12-4 the assertion
{(a,y)) . We ask that, in this chapter, the curly
bragketa be taken to signify sets of points rather than
sets of ordered ﬁéirs (triplés) of numbers. In other
wardsgfwe,ask'that ((a,y)) , {(x,¥y): x =a}’, *
[(a,y)e y real}l and ((x,¥y): x =a , y real}l' all be
fead alike, as the set of all poinﬁs whoge coordlnates

are ordered pairs of real numbers such that the first

nuibef is a and the second is not PEStPiGtéd.
s

[
[
-~ -

w;?Note that our definition of tangent circles requires
7theﬁ.to be coplanar. Noncoplanar circles can, of course,
(inte¥sect in a single point. However, we have chosen not
to apply the word "tangent" in such cases. In other
texﬁs, tanéent éirgles may be defined in such a way as

F k not to require them to be coplanar,

» Some teachers may search the text.in valn for a
‘method of “constructing" a tangent to a glven circle from
a given point outside the circle. It may be useful and
appropriate at some point to demonstrate, not how to
“conatfugt" the tangent, but how to fina the coordinates
of the péint of tangency. A sample of such a demon-
stration is here indiéated: Choocse a coordinate system
Euch-%hat‘ 0 , the center of the given’circle has -
coordinates (0,0) and A , the given point, has
coordinates (a,0) . Then, P , the point of tangencyig

must have coordinates (x,y) such that % : ;fg;g = -]

= =]
and x“ +y"  =r° . That 48, m_ -m__ = -1 ; and P 1s
OP AP
on the given circle. These yleld

i,r 7 2 V Eﬁ" — fg

éa coordinates of P




836

840

845

816

\EE 848

than 18

- +

Only high ability classes should be required to

" master the proofs of Theorem 12-6 and its corollaries,

although.all students should understand the statements.
Note the symbolic expression - ((x,y,a): xg_+ y

Students may need help initially in translating such

expressions. The intended meaning is: The set of all

. points whose coordinates.are ordered triples of real

numbers, the first two of which are the -ordered pair (x,y)
such that xE + yE = 0 , and the third is the number a .
Clearly this 1s the set whose only element is the point
with coordinatesd (0,0,a) .

Note that, whereas the (degred) measure of an anglé
iz, by definltian, restricted to positive numbers less
» the degree measure of an arc may be 180 or
The degree measure of an Arc is a positive

greater.}

.number {ess than 360 .,

Tﬁe symbols . m AXB denote the "degree measure" of °
AXB , and we read it "measure" of EEE , for brevity. 1In
Section 12-8, we consider thé length, another kind of
measurE; of én arc. We distingﬁish 1ength from degree
mEEEure by using gizAXE to. denote length of AIE

The proof of Theorem 12-7 should be required 6f

=

-raverage high-ability classes.

A proof, using coordinates, of Corollary 12-7-1 1is
indicated in Problem 15 of the next problem set.

"segant ray," "tangent ray,"

The meanings of the terms

and "chord ray," used in Problem 2, are obvious.r

Some’ bright student may abserve the general relatlon-
ship between the’ measure of angles and the measures of -

‘arcs: théy intercept. If no sjudent makes the discovery

on hls own, the class shﬂuld'bé led to 1t. The measure’

of the:angle is half of elther the sum or the difference
of the ﬁeasufgs of the intercepted arcs depending upon the
location of the vertex. If the vertex is inside the
eircle @393315132353;‘ap the center) the rieasure &f the °
angle 1is half the sum; if outside, half the diftrerence;

AAf on the circle, it doean't mat er, for one "intercepted
s:arg has zero measure., AN r

‘ - g 519 - g,
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) . an infcrmal, 1ntu1tive diseuasian of “’egments jcining a b
point to a circle." Problem 5 of Problem Set 1-# should
be reviewed., A well drawn circle on the blackboard, a
mgtér atick, and‘a selection of situations, each analyzed
\ numerlcally, should lead the students to generalize some-
what as follows: the point can be inaide, on, or outside
the elrcle; for a given point, the praduat of the lengths
of the two segments joining it -¥o the- cirele remaina 4
) egnatant, Pegardless of the slope of the line Eqntaining'
' “the segments., Of course, if the point 1s on the circle,
" one segment has zero length; and if the 'line is tangent to
the circle, the "two segments" have the same length; but
the generalization still holds.

Teachers wishing to give a test at this polnt will
find a number of Euitable gquestions in the Illustrative'
Test Items for the chapter. '

The following section 1s devoted to a ‘discussion of
the constructibility of a triangle whose sides are to be
congruent respectively to three given line éegﬁéhta— IE
18 presented as an example of a methed -one might use to f
investigate such problema when the only availaﬁle drawing
instruments are stralghtedge and compassa. .
-
Suppose we wish to make a copy of a cértain tfiangle.

‘ (1) Measure the sides of the triangle ys,rnish‘to
copy. §‘»;-,
(2) Draw a segment -AB whose 1ength 13 one. of&the .
lengths you found in Syep 1.  Ae—m———— B ‘

(3) With a compass, draw a circle with center at ;'
A , whose radius 1s another of the lengths you -
found in Step 1, and draw a circle with center
at B whose radius is the third of the lengthg’
you found in Step 1 Your dilagram should now
look 1Lke this. = - ,




Then, 1If C and C' awe the intersection points of your
circles, each of triangles ABC and ABC' is congruent
to the original triangle (by S.8.8.), and therefore a copy
of 1t. This method of conetruction guaranteeg that all the
triangles 1t produces are coples of the original one. -
Does 1t nece§§§rily produce any tfiangles? Cduld the
construction lead to a diagram like this?

—

It 1s certalnly possible ﬁé”ﬁraw two gifgizrg such as those
of the last diagram, which have no .common pgints. Our
question is whether it 1s poassible to draw ;ansinteraegting
circles with centers A and B, if it ¥ given that the
radii of the circles are the 1Eﬂgths 6f two sides of a.
triangle whose third side has length AB . A theorem.
asserts that this is not possible. '

’ Theorem. Let a, b, ¢ be positive numbérs for which

a+b>¢, C -
b+c¢c >a,
¢ +a>b. .

Then _
" I. There is a triangle whose sides have lengths
a, b, and ¢ . ) . Y

8



II. If the distancé’between the centers of two co-
" planer circles 18 ¢ and if the circles have radii
a and b , then the circles inte;séct in two
pointa, one on each side of the line of centers,.

Praaf- Here are some situations in wﬁ;ch the
inequalitles atated 1n the theorem are all satisfied

Here are semé sitﬁaticna in which the inequalitiles stated
- in the theorem are not all satisfied. It appears that the
circles do not intersect and that no triangle is formed.

=

We. prove Parts I and II together, using coordinates.
We consider the points A(0,0) and ‘%(G,c) , and try to
find the coordinates (x,y) of a point C where the
circle with center A -and radius b intersects the circle

with center B and radins a . By finding such a C we
show that there 1s a trlangle ABC whose sides have
lengths a, b, and c¢ . It will turn\cut that there are
two such points, one on.each side of the isaxis, We use
the distance formula to express the conditions that
AB=Db and BC =a .
b oo 8.
u
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‘We have
x“ + y° =

and
- - (x - c)2 + yg = af .
We try to find values of x and y which satisfy both '
tgiii equations. We rewrite the gacaﬁd as_
| x2 =’2éx + cg + yg = a® |
and then subtract the flrst, obtaining

_2ex + ¢© = a2 . p2 .

This shows that the only possible value for x is

We return to the first equation with this value for x
and try to find y . We have

®+p% - 8%\ 2 _ 02
' 2¢c y =

2 _ 2 [c®+1® - 8?2
yo bt (e

or

. _ ) &
We can solve this equation for y if and only 1if -the
_right side 1s not negative. Let us try éherefafe to show
$% ¢ that J

7 _ . . 7, -~ ,
- b2 _ (2 L2 - af\2 . :
; ‘ T 2c ) ‘ Y

i

) ,
is not negative, By means of algebraic, manipulation it
4 - can be derived that this expression equals
(a+b+c)(a+b-c)b+ec-a)ic+a=-h)
Ly ——ig . Iz L,
fe

That thisriattér expressioh 1s positive follows from the
facts that

[

. a +

Lo - o Y

I
WO W W
o 2 O

+
b +
¢ +

[}
o oop o

luv]




. Let us call this expression u ., Now that we know
that u 1s positive, we kmow that the sygpol YU 18 a
meaningful one, and that the possible values for y are

f and - f . We conclude that there are two such

' 2 .2 2 \
e +b - a° -
(EG f :/E)

Notice that ‘4/u is positive, - ¢4 1is negative,
80 that these points lie on oppoalte sides of the x-axils,
which 1s the line Joining the eent\ers of the two circles,

¥
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Part

Illustrative Test Items fpr‘cggptgg 12

Ai

lDi

L3

Indicate by "+" 41if each of the following 18
always true, by "0" if it is possibly false.
If two chords of a circle bisect each other,
both are diameters of the cirecle.

If one chord contains one endpoint of a dlameter
and anether chord contains the other endpoint

of the diapeter, the two chords are equidistant
from the center of the circle.

If a tangent and a chord intersect at a point of
the circle, and if the measure of the tangent
chord-angle is 30 , the length olthe chord is
equal to the length cf/the radius of the cirele,

-

If two chords of a circle are perpendicular to
each other then at least one of the chords is a
diameter. _ . :

If two chords of equal length, gut not diameters,
ihtersect in the interior of the circle, the
quadrilateral whose vertices are ‘the endpoints
of the chords 1s an i1sosceles trapezoid.

If two ghords of equal lengﬁp intersect in the
interior of a cirecle, the radlus containlng the
point of intersection bisetts one of the pairs
of vertical angles contalning the two chords.

‘Aldiameter which bisects a chord 1is perpen- |

dicular to the chord.
- ¥

If a chord intersects a tangent at the point of

If a rhombug 1s inscribed in a circle, the
. A ]
rhombus 1s‘@ Bquare,

L -

If a parallelogram 18 clreumscribed about a
circle, then 1t %8s a square.



11.

14,

16.

17.

4

The set of centers of all possible circles

_ tangent to a glven line at a given point is

contained 1n the line perpendicular to the

given line at the given point.

A trapezold inscribed in a circle is isosceles.
If a palr of opposite angies of a quadrilateral
are supplementary, a circle exists which contains
all four of the vertices of the quadrilateral.

an Iinscribed triangle, at least one of the
tangent-chord angles 18 congruent to one of the
angles of the triangle.

The measure of an inséribed aqglg-ls equal to
one-half of the degree measure of the arc in
which it 1s inscribed.

If one side of an inseribed triangle is a
diameter of the circumscribing circle, two of
the angles of the triangle are camplémgiﬁarvi
If an inscribed angle contalns two chords of
equal length, its midray contains the center of
the circle.

An angle inscribed in a major.arc is obtuse.

If a circle 18 circumscribed about a regular
hexagon, the radlus of the clrcle 1s congruent
to a side of the hexagon.

An inscribed angle that intercepts a minor arc
1s acute.

If two chords intersect within a circle forming
palrs of non-adjacent angles, and if the non-
adJEQEEﬁ arca Intercepted by these angles are
congruent, then the chords are diameters of the'

circle.

9F°



Part

If a right triangle i1s inscribed in a eircle,~
its hypotenuse is the diameter of the cirele.
of the circumference divided by
the same number for all circles.

The quotient
the radlus i

If two regulax polygons are inécribed in a
circle, the ong with the greater number of sides
has an ‘Bpothent which 18 more nearly equal to the
radius- of the circumscribing circle. .

If the radilus of one circle is three times that
of a second circle, the circumference of the
first is three times that of the second.

The area af'a square inscribed 1n a glven circle
i1s half the area of one circumscribed about the
eircle,

In a glven circle, the areas of two sectors are
proportional to the degree measures of their arcs.
The quotient of the area of a circle divided by
the square of its radius is 71 .

- . The length of an arc of a circle can be obtained

by dividing its degree measure by T .,

The areas of two circles are proportional to
their respective circumferences.

Chords CD and BE intersect at P . The

degree measures of nonadjacent arcs AD and
BC , respectively, are 32 and 40 . What

1s the measure of /APD ?

Chords AB and TUD are perpendicular. The
degree measures of adjacent arcs BD and DA ’
respectively are 50 and 40 . What are the

degree measures of AC and CB ?
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Chords AC and BD are equal in length and
they intersect at P . The degree measures of
adjacent arcs BC and EB , respectively, are
50 and 80, What are the measures of /CFD ,
/ADC , and /ICB ? ' .

Parallel chords AE and BD intersect chord
K in two points A and P , respectively.
mgﬁ‘)é%mfﬁ, figSMiSD and E are on
the same side of AC . What 1s the measure of
/CAE ? )

Find the héasure of an interior angle of a
regular nine-sided polygon.

Into how many triangular regions would a convex
polygonal region, with a polygon of 100 sides
as the boundary, be separated by all poasible
dlagonals which connect a given vertex of the
boundary with other vertices of the boundary?
If the circumference of a cirele is a number C
such that 16 < C ¢ 24 , and the radius of the
circle is an integer,. find the radius.

If the number of sides of a regular polygon
inscribed in a given circle is increased
indefinitely, what 1s the 1limit of the length
of one side? Of its perimeter?

Write a formula for the area of a cirecle in
terms of 1ts circumference instead of 1n terms
of its radius.

The area of a circle 1s 27 ; what is 1ts

f

radius? R s
e R

If the areas of two clrcles have the ratio T%ﬁ ,
what 1s the ratlo of their diame¥ers? '

Two sectors of a circle are such that the
measures of thelr angles are 50 , 100
respectively. What is the ratgg of the lengths
What ¥s the ratio of




13.

15.

lgi

&

A eircular lake is approximately 2 miles in
diameter. Ahagt how many hours will it take to
walk around 1t if you walk at 3 miles per
hour? (Give the answer to the nearest whole
number. ) '

What 1s the least possible value of the
difference between the area of a semicircular
region and the area of a triangle inscribed in
the semicircle, if the radius of the ‘semicircle
is 6 7 : )
Sphere S = ((x,y,z): x2 + yg +2° = 36} . Tell
whether each of the following points 1s on the
sphere, in its interior, or in its exterior.
(E.) (—S,Q,Q) (E) (" @JEBJQ)

(b) ("5;1:(3) (f) (5;5:35)

(‘:) (“6;’1:’1-) (5) (4:’4;2)

(d) (5,2,2) (nh) (3,1,5)

Chord AD intersects diameter AC at A .

AC = 50 . AD = 30 . What 18 the distance from
the center to AD 2

In a circle whose center is 0 , the chord X¥
18 the perpendicular bisector of radius OA .
OA =6 ., Find m XAY ’ gg’f3§ , the area of
sector XOY , ghd the area of the segment of
the circle bourded by XY and XAY .

pgrimeter of the hexagon is 12 ,

reservolr appears as a circular-region of
diameter 7/8 inch. If the scale of the
photograph is 2 milee to 1 inch, find the
approximate (nearest one-half square mile) area
of the surface of the reservoir.



20.

21.

22.

23.

Circle C = ((x,y): x° + y 25] Find the
Elape af each of the two chards whose - endpaints
are, respectively, the point P(3,4) and an
endpoint of the diameter in the x;ax;ag Find
the slope of each of the two chords whose
endpoints are, respectively, P . and an endpoint
of the diameter in the ysaxisf

If ‘a plane is 8 inches from the center of a
sphere whose radius 1s 17 inches, what 1s the
length of the radlus af the cirﬂlé which 1s the
intersection of the plane and Ehe sphere? What
is the ratio of the area of tg;s ‘eircle to the
area of a great circle of the_ Sphere?

CD 1is tangent at C to the cirgie whose center

is B . 7B 1s perpendicular to the plane of
the.circle, BC =6 . AB=8 . CD =24 ,

Find AD ..

A continuous belt runs around two wheels of
radius 4/2 and 942 feet, respectively. The
centers of the wheels are 16 feet apart.

Find the approximate length of the belt (to the
nearest foot)., (/2 1s approximately 1,414 ;
T 1s approximately 3.142 .)

Circle C = ((x,¥): x> + y° = 25} and

line 42 {(x,¥): x + ¥y =5} . Find the length
of the chord of C which is contained in Jf .

Circle C = ((x,¥y): x° + Y' = 5} and
line t = {(x,y), 2x + y = 5] . Find the

[]

and t . How many such pﬂints of intersection
exist? What 1s the relation between t and C ?




26, Circle C.= {(x,y)s x° + yg = Q] and

1ine £ = [(x,yo X+ Ey = 5} . -

F.

(2) Find the coordinates of the points of -
‘ —intérsection cf /C- and’ <g§ A .
v (b) Find the midpaint of’ the chcrd of ¢ l e

R . . contained in £ , . . - "
c (c) Pind the slope of this chord. o
' (d) Write an equation of the line cohtaining -

. the midpaint of the chard and ‘the center

'of the slrclé ’ 5
(e) Find. the distance ffom the chﬂrd ta thé )
ceriter of the clreli Z '

[4N]
~3

. 'C;rgle C= [(x,y)‘§§ {+ y 4}

‘(a) What is the x- cggrdinaté of each point of
’ C whoase yhcaardinate is 1 7
" (b) Does the point T G/E ¢ﬂ§) lie on “the
clrcle?. g
(e) Does the paint S(2,3) Lie on the circle?
28. Find the coordinates of the points of dnter-
section (if any exist) of the circle
= {(x,y): xg + 92 =+25} and each of the
following sets cf.pQ;nts; ' :

(a) &= ({x,y): ¥ = -4) .

(bg B= ((xy):y-x=7)

(¢) C={(x,y): x=2+Xk,y=9+%k, k real)
‘ (d) D= ((x,y): x° + y% = 9)

Y




LINEAR AND PARAMETRIC EQUATIONS .

v t

<

In this Talk we investigate further the equations of lines
...and planes discussed in Chapters 8 and 9,

1. Lines in the xy-plane.

Consider first a line ,15 in the xy plane which 1s not
- parallel to the y-axis. Then 1t has a slope m and if
(x l,yl) is any point on it we may write: ¥

£

in which the equation has the familiar point -8lope form Using

L

((xy): ¥y -y, =m(x - x1)) ,

some elementary algebra we get:

L= (x,y): v - Yy = mx - mx,} ,

o},

W -

= {x,y): mx -y +(;mx1-yl)

;and if we set a=m,; b= -1, ¢ = -mx; -y, , then

Jf—’[(x,y)- ax + by + ¢ = 0} g

in which the equation has the form of the general first degree
equation In x and y . An equation of the form '

8x + by + ¢ = 0 41is a first degree equation in x and vy 1f
a, b, ¢ are real numbers and“a and b are not(both zero.

. Consider next a vertical line v in the xy-plane. Then
v does not have a slope and if (x1,y;) 1s ény,point'on.it,
- we have a

[(X:Y): X = xl}

If we set a=1, b=20 » C =Xy, then

= ((x,¥): ax + by + ¢ = 0}

‘HEnce a vertical line has an equation which is a special case'

of the general first degree equation.
\ - . )

i o

ras
[

58 - 9 ;
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~/
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2. Géneggl First Degree Equétians in x and y . - K
In Section 1.we observed that every Iine Jg in the t vt
;y%plane can -be represented by an equationﬁef the form - y
ax + by +¢ =0 in, which a and b¢ are not both zero. The
EAE N
repreaentation is in the following senae
Given a line JZ » there exlst real numbers a, b, ¢ vwitn a
and b not both 0 , such that
ﬁ e . 5 ’ ) !
- ='{(x,y):%ax + by + ¢ = 0} . L . N——
. - = . H ¥

In this ségtion we consider the question: Dgéﬁ'évery first
0 represent a Iine?

1]

. degree équation ax + by + ¢

- g .
Note that

. . _li .
. ’ [(},E;y)f ox + Qy’+ 0= O-] ,
"18 the entire xy-plane and that !
(x,¥): Ox + Oy + 1 = 0]

is the null set.' This shows that there are at least two
0 whic¢h are not equations

equations of the form ax + by + ¢
of linés. Indeed,

{(x,¥): Ox + Oy + ¢ = 0} .
18 either-the null set (1f c # 0) or the entire xy- plane
(if ¢ = O0). But note also that Ox +0y +¢c=0 1is not a

first degree equation.

Consider now any general first degree lequatign. To be
.definite, suppose we are given three real numbers, a, b, ¢
with "a and b not both 0 , and that S 1s the following
set:

8= [((x,¥): ax + by + ¢ = 0]
We wish to show that the set S 1s a line.

‘There are two cases~to consider:- elther b =0 dr b #o0.

] -

If b=0, then a %}9 , and-

((xy):x = - Z)

~ 5&’}1 e



But irf ,gg is the vertical line through (- —36) we knaw that
- ig . ] ) X R !
= ((x,9): ; =-=) . |
It falloﬁ?ithat s =} ég'ahd hence that § 18 a line.
- Ir hJ% 0 , then: L ¢
[(SE Y) % = %] . . L2
* : L ’ B
Let. p be.the line g}p@ ‘slope - %' which contains the point

(Q;é %)_-; Then' o 5 - ,

‘o
I

(69 y ¥ ¢ = - &x - o))

It follows that S = p and that S 1s a line.

. This shows that every equation ax + by +c 0 in which
N a and b are not both 0 id the equation of a line in the |
xy-plane. Summarizing Sections 1 and 2, we see that every
equation ax + by + ¢ =0 , with a and b not both O, is
theequation of a’'line in the xy-plane, and conversely, that
every line in tﬁé Xy-plane can be represe%ted by an equation
ax + by + ¢ = 0 1in which a and b are not '‘both 0 . OfF
course, this 1s why ax + by + ¢ = 0 1s called a linear

equation.

-3, Parametric versus Linear Form.

- In Sectlon 1 we derived the general linear-eqpaﬁion start--
ing from the pglﬁf?£10§é form. In this and the next sections
we show two other derivations of the general linear equation,
‘one uslrg parametric equations and one using the Pythagorean

B

Theorem.. - C - -
Let (xljyl)' andﬂx(xg,yg) be two distinct points and
gﬁ the line which contains them. Therr - . <

Z= ((xy): x = X + k(xy = x9), ¥

y, + k(yg - yl){/k is reall,

535



We consider two cases: ,g is vertical, or it isn't. If ﬁ Z\
is vertical, then Xy = X; yg # ¥y, » and

5

» ,l= (xy): % = 'xl,, Y=y +k(yy - ¥;), k 18 real) .

We know from our work in C‘hapter 3 tha'c the set of all 5331

numbe??s ¥ such tha'cj y=uy, + 1-:(yE - yl) for some real- :
number k 1s the set of all real numbers. Therefore the last
gtwa candit;aﬂs on X and y 1in the set-bullder symbol farﬁ
are:,féQu,;valént téti‘ze condition that y be real. Therefore g

. 1
s and 4
,Z; ((x,¥y): ax + by + ¢ = 0)
» in which a-l,b?;c’),;cs-xl(andhencéaism:t 0)

If ﬁ is not vertical, then X5 ;'3;1 ' and ‘ )
J # .

/Z , ) X - X . - .
ek {(?‘:-’Y)! K= =% X ¥En k(yg = ¥1) »% 18 real}’
‘a'nd

X = % I o :

A {( GY) K= e, Y =y 4 =¥ - ¥y), k 1s real}.

2 1 ‘ 2 1 . ;
Since every real number x can be obtained from some real

. o X - x

number k by using the formula "k = f—fi— » the firat and
: -2 -1 -

third conditlons in the set-buillder sﬁ’mbol above are equlvalent
~ to the cgn,dition that x ' be real. Thetefore

sé {(}E y) y = 1 + :—E‘_i(yg_ yl) } 3

bl
)

-

A= [(x;y) Vo - W% + (%) - xp)y + (xq¥1 - %,9p) = 0)
and , .
L=ty axdoy + 0= o)

in which a’'=y, E‘yl ; b= X - X ;-ard ¢ = XYy - X1¥5

C -
and Hénce b 18 not zero.) <

-

h )

%




i j= ((xy): x = - 2 + k(-

-+ s ' v L R . ' . ’ l;f
. . ) . - - , = ] . g';"f’, -

This shows that if we etert with any line in the xy- plenefx
and eeeept the fact that it can be represented peremetrieelly

:ee in Chapter 8, then it has a first degree equation

ax + by +e =0,

‘Suppose, now, that we etert with a general first degree
equation. Can we get peremetrie equations for a line from lt?'
Let a, b, ¢ be real numbere with a dnd b not both 0 and. .
let S5 be the following set. : . :

S - -

. = [(x,¥): Ex+by+c§}

Then either b =0 or b#£o . 1:‘ bec», then a # 0,
(-5:0) €5 and (-£,1) €s. Let £ be the line:

+ k(1 - 0), k 18 reall.

il
O

):Y

P

li
o] Lo

+

|

Then . | '
ﬁg [(137); X

If, on the other hand, b # 0, then (0,- £) €S and

]
le)
Yt

[

ta

= ((x,¥): ax + ¢

[}
1
T el
Nt

(1, Z25S) €5 . Let q bve the line:

a7 ((oy)i x =0+ k(1 - 0), y= - £+ kD), k 15 real)

Then

a= ((xy):y =%+ x(3)) .

q
and g =5 . This ehewerthet 1f we accept the parametric
equations for a line in the xy-plane and if ax + by + ¢

((x,y): ax + by + ¢ = 0)

]
o)

~ Is any first degree equation, then there are two dietiﬁe?
‘peints (xriyl) and (xg,yg) such that the set

s

((x,y): ax + by + ¢ = 0}

is the same as the set

£

((x,¥): x = x; + k(x, ~x,), vy =y, + k(y, - ¥, ),k 1areall.
1 2 1 1 2 1



W -

b,  Derivat1an of the Linear Equatian Using the Pyt;ﬁggfgan
’.Ihearem.ﬁ : v . . e

Let . iii be’ any line in the Xy~ plane whieh dges not Eentaln
(D,Q) Let A(a, p) be the . g .
foot of the perpendiculaf o B o
‘from 0 to. £ . Note, since o
4 does not contain 'O , that . p-
" .a and b are not both zero. AL
Then P(x;Y) 18" a point on Ji‘i§§§f’ — < ey

-if and only 1if : Ag

-

1]

(0a)2 + (aR)?,
. x° + yE = a% + b° + (x - a)g + (y - b)E
0 = 2a% + 2b° - 2ax - 2bx ,

2 ind . SR .

(op)?

ax + by
B Thérefare . N
. ;f fTX’Y) ax + by
Thus ‘ - . .
L ((> ,y) .ax + by + ¢ = 0}
where (a; b% 13 ‘the foot of the perpendiculaf from" O té.lg

a® + bg]

gand ¢ = b

! jSuppgsé next that p 1s a line in the xy-plane through
the point (0,0) and that 'Y '
A(a,b) 1s a point different ’
from 0(0,0) on the line .
through (0,0) 1n the ‘ P(x,y)
xy-plane which 1s perpen-
dicular to p . Note that

A(a,b)

&
X

. i - - —— X
a and b are not both .0 .
Then P(x,y) 1s.a polnt in
. p if and only if
: ~p
. = . . =
(0a)% + (0r)® = (aP)%, | :
a® + b° + ;2'+ ¥o = (x - a)® + (v - b)° .,
0 = -2ax - 2by ,
ax + by =0
L 538
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‘Therefore - - . <,

0}

[]

(x;y)- ax + by %

- L *
where (a,b) 1is a point, hot O , on the 1iné through 0 and
perpendicu;ar ta p , and where ¢ = D-;

=
hy

£

5' In thls sectian we nDt only have. derived the first dégree
equatioﬂ for a line using the Pythagorean Theorem but w2 have
obtained a useful by =product., It is: If a and b are not
_ both -0 ; then the line from (0,0) to (a,b) 1is perpen-
' d1cu1ar to the line ax + by + ¢ = 0 , whether this latter line
is through “the origin or not. Stated in another way: If
"ax + by + ¢ = 0 1is a first dégree equation for a line L ¥
then . [a, b] 18 a vector perpendicular to gg (1.e. perpen—
dicular to every vector which can be represenﬁéd by a directed
line segment ccntaiied in Jg ), briefly, [a,b] 1s a narmal

Ervectcr to sg

5. First Degree Equations for Planes.-

Let p be a plane not containing (0,0,0) and suppose
(a,b,c) 1s the foot of the perpendicular from O to p .

A
Note that a, b, ¢ are not all zero. Then P(x,y,z) is in
p 1if and only if

(0p)? = (0n)% + (aP)?, : |
xg + y + 32 f_ag + b2 + c2 + (x - a)E + (y - b)% + (z - c)é
28X + 2by + 2cz = Eag + Zﬁg + EEE R
aX + by + cz = ag + bE + cg
ahd
= {(x,y,2): ax + by + cz = 32 + b + e
Observe that . \

p = ((x,y,2): ax + by + cz = 4}
. where f{a,b,c] 1is a normal vector for

the plane,

L




let. q be a plane through "0(0,0,0) and suppose
A = (a,b,e) 1B a point other than O on the 1ine,thrau%2) 0
and perpendicular to q ., Note that a, b, ¢ are not ajl
zero. Then P(x,y,z) 1s-a point in gq 1if and énly if

(0a)? + (op)%= (Rp)?,
R y27+ 22 = (x - 2)% + (y - 8)2 + (2 - ¢)?,
ax + by + ez =0 . - '
Observe tha,tra.w . : - C .
q =%, y,2) ax + b&:%*gé’; o) .
o - .
and that [a,b,c] is a ngrmal vectgr ‘for q .
Next we start with an arbitrary fiprst degree equation in
X, ¥, 2 . Suppose ax + by'+ cz = d 1s any equation
with a, b, ¢ not all O .
Iz this an equatiaﬁ for a plansf Dn the basis of our’ develop-
~ment above 1t would seem. so if either d = 0 or
d = ag + bE cg i What 1s the situatian for an equatien like
3x + uy + 52 = & for which neither of the equations,, d = 0 ’
d = a + bg + eg » 18 true? (We are identifying a = 3 , -
b=4, ¢c=5,4d=6 1in this example ) 1s
8 = ((x,¥,2): 3x + by + 5z {‘] g
- d
& plane? Multiplying through by = 72 ) (1:g_ = 77”2 2)
' ) 3% + 4% 4+°5 a“ + b° + c©
we see that - o
F -
LI 18 24 30 36
S = {(}:,y,z) ——:{ + 5ﬁo + TDZ = ’EO
and that -
18 ) 36
P @2=3.
ﬁ 50 ° o
If we set : .
i 18 , 24 30 36
1 = I = == = = 1 = _
a ‘5_ ¥ bt 50 c 50 ° d ST H
then .
t
@ .
540



. . e . 7 . o ) 7!7 o 8 - -
Thus S is ﬁhe plane which is perpendicular at (%6 s %%;? %%)

to the directed segment from the origin to the point

18 24 30\ - ) :
(%% %)

In the general case, 4f a, b, ¢ are not all zero, and if °

d) , v

= 0} , &

La
[

{((x,¥,2): ax + by + cz

§

i

q

Y

y

1]

L]

:
h‘
in
Fl
.
o,
"
L]
L
-
&
RS

i

o
e

Y

o

o]

i

Note that d!;zvaig + biE + G'E !

and that [a!,b',c'] and [a,b,c] are parallel vectors.

Thus 1t follows, regardless of whether or not d 18 zero, that
S  1s a plane with normal v%ctar (a,b,c] . If d =0 then

S 1s the plane containing the origin and perpendicular to the
segment from (0,0,0) to (a,b,c). If d# 0 and (i)

a#o0 [or (11}') b #£0, or (111) c # 0] then S 1is the
plane contaipAng " (1) (g,o,o) [or (i1) (O;%,D) or (111)

(DZD,%)] and perpendicular to the segment from (0,0,0) to

v (a,b,c) .

"In the development -above we made direct use of the
Pythagorean Theorem in developing the first degree equation
for a plane. We present now another development using vector
ideas. (Elementary propergies of vectors are discussed 1in the
Text in Chapter 10 and in Appendix XI;) Recall that two
vectors are perpendicular if apnd only 1f %helr scalar (or dot)

L

T

1

[



\S * 56’ 50 * :
In the general case, 4f a, b, ¢ are not all zero, and if

d) , v

La
[

{((x,¥,2): ax + by + cz

1
Ll
L]
'
!
mn

=,0(x,¥,2): ax_+ by +.cz .= 0} ;MWJ,J”&,M

e
y
o R
i

0, arid

w
]

((x,y,2): a'x.+ b'y + c'z = 4')

1 # 0 , where
ad bd . . ecd

al = —>5 & b! = 5———F—— , c! =
ag + bE + e° - aE + bE + gg aE + bg + gg

w_h‘
sy
a7

My
g

al = —— d’f*f,,

Il
P
]
MO

Note that d!;zvaig + biE + G'E !

and that [a!,p',c'] and [a,b,c] are parallel vectors.

2

(R

1
1s the plane containing the origin and perpendicular to the
segment from (0,0,0) to (a,b,c). If d# 0 and (i)
a#0 [or (i#) b #.0 , or (111) c # 0] then S 1is the

plane contiiging (1) (g,o,o) [or (i1) (O;%,D) b; (111)

us 1t follows, regardless of whether or not d 1s zero, that
5 a plane wilith normal véctar [a,b,e] . If d =0 then

DZD,%)] and perpendicular to the segment from (0,0,0) to

(
(a,b,c) . _

"In the development -above we made direct use of the
Pythagorean Theorem in developing the first degree equation
for a plane. We present now another development using vector
ideas, (Elementary propertles of vectors are discussed 1n the
Text in Chapter 10 and in Appendix XI;) Recall that two
vectors are perpendicular if apd only 1if their scalar (or dot)

L

[

T
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The text development 1eading to this result rests in a very
essential way upon the Ruler Paé-ulate and the theorem regarding
proportionality of the segments formed when three parallel lines
are cut by twyo transvetsals, Ihe following alternate develop-
ment 1s based on_vector ideas \ :
Given a line “AB where A = (xljyl,zi) and
B = (xE’yE’gé) , then P(x,y,2z) 1s on "E' and if and only 1if
-Ythere 18 a real number k such tf8t AP = k ° AB , and. - .
S L i A SR AT F R EONEE S PRI Y v 2 - z, ]

( But thlas vector equation is true if and Qniy if all three

follcwing scalar equjﬁi ng, hold: -
X - % =’k(;2 - ;l)
y -y, = k(yp = vy)
'z - 2z, = k(z, - 31) ’

-~ It follows that .

i -
x =

I
el

+ k(xg - ;l) 3

= {(x,¥,2): y'= v, + k(y, - yl) ,and  k is real.

=

& . Z2 = 21 + k(gg - Zl} s 4
A similar development ylelds .a parametric equation 2

representation for a plane. Let A(%,,¥y,2y) » B(X5,¥5,2,)
G(xg,yg;zg) be three noficoplanar points and p the plane
which contains them. Then P(x,y,z) 4is in p if andonly if .

A

{
o+ . —
AD = h AB
AE = k AC
¥




there are two real numbers h and k such that
Foelp - Bk & ‘ :
| 4 = '7 L] A + K - ' = . -8
AL 6 . /f:

that 1is, ’
- ) I o g . 5
; [x - xE:i Y- ¥y sz - 2] {

= [h(:!z:E - %) + k(xg'- x;), b(y, - vp) + klyg - yy)sh(zy - 'z'l), .
"t k(za-s gi)] ) i ’

But this vector equation is true if and only if the following
three scalar Fqua&ticns are allitru : :

X - X, = ﬁ(xé's X,

! ) K(xg - xy)) I

(*)<y

¥, = h(ygs = ,yl)"" k(YS - yl)

= h(zy - 2)) + k(zg - Z;)

N
1
[
et
]

N X = }ti‘"‘ h(}tg = xl) + k(x§-

]

) )-
y;) and h and k
are real. )

ke B
1]
A

(x,y,2): ¥y = yy + by, - 9)) * kly,

+ k(z3 - 31)

L ) ! 25 = %) .
\\It 18 of ipterest tcvnate that if h and k are

"eliminated" from the set of three equations (*) above, that

a-first degree equation in x,.y, z results. One way to show -

thls 18 to rewrlite the equations as : ﬁ)

i
”

i(x - 3{1) + h(xE

I
<
'_.l\
S
+
=
&
1
wd
-
S
|
Lol

’(y - yl) + h(yE

o < =(z - zl) + h(zE - El) + ],c(,z:3 = zl) =0 ; -




- * ’ ' { LY . T om
~ - : :
" and to think of tHem as three equations in the "unknowns," -1 ,
h and k . The corresponding determinant of the coefficients

.

=~ - [ - b

is B ' /f o LT ) { .

Since the system of equations (%) has a “saluéganﬂ other . .
{than (0;0,0) , 1t follows that A must be O . Expanding -

Fl

the determinant we get X
~_/(1) ‘ax + by + cz = ax, + b§1 + ez,
~ where o -
fyg'ﬁ Y3 % V] 3 =X Xp - X Xp = Xy X3 =X

_af= ) b
g ngg

[]
o
i
L]

-

and (1)- 1éq§he desired equation. . o
-~ ¥ .

7. Wny Parametrid Equations?
r
Consider, the sets

| /Sl = L(}C;JJ’;S)? T = 2y - 2z = 5]
: t(x;y;ﬁﬁz X -2y +2z=0) "~ - s e

—_
(]
m‘ w

[l

‘e

[]

37and x - 2y + 2z = 0}.,

0
W
|

= ¢(x,¥,2): Tx - 2y - 22

Then - S, and. Sé are planes and S, 1s the 1ime of inter-
seotion of 5, and S, . miatiﬂfar‘mat%m about line S, 18

) reYealed by the'equations in the set-builder symbol forE:SE ?
It i8 easy to see that S3 lies in Sl and SE ’ and hence
that E@ Jis per;endicularfta each of theenormal vegtqr§
(7,-2,-2] and" (1,-271]-. But what is the direction af 85 ,
and what polints does 1§’Eantain?

%

v

B

-

s "} "l 5 ) E!



N . e . L »

e F

get . x =1 1n ‘the equatinna ?§‘= ﬂy -2z =3 and.
¥ Ey + z.= 0 and solve the Pesulting eqsétian for y ‘and
Z. . 3@@ ;hia ovér again withi x =3 . We find that (1,1,1)

. and .(3,%,5)° age two poi§§g,1n ;B‘ and hence that
e L x =1+ k(3 1),
'féf 53'% jx{y,g): y :*1 +‘kG# - 15‘, Eﬂé:?k +is real
- , h’: R 2= 1+k(5-1), -
. :X = ;.+ 2Kk, 1 )
(3) S8y = (x;y,z); v =1+ 3kY, and “k is real
3 ' z =1+ bk, | :

The parametric equations in (2) seem to reveal more
informatdon about S, than the equations in (1). An
inspection @f‘(E) reveals that "84 passes through A(1,1,1)
and B(3,4,5)', using k=0 ®nd x =1 . By takiﬁg

i

k= =1, + 2 » +3 , ... we get other points along SS with a .

minimum expenditure of effort
7? : The parametric equations in” X3). ahow that EB Ecnt%ins
' (1,1,1) -, by taking k = @ , and that’ 1t is parallel to the
k1
vector fE‘E 4] , by looking at the coefficients of k

b

One yay to think @f the parametfic equations 1s as a,
mapping from the F axig to a set of polnts in xyz-space.
=- As a point "marched along" the k axis,

- %
) 4
- — ———a— ——
1]: i
the corresponding:point (x,y,z) "marches along" the line Sq
k — — (x,¥,z2) i ;
: ‘¢ 0 — — (1,1,1)
X 1— i L (3:"4:5)
2— - (517:9) .
3- - — (7,10,13) o
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/ As another example let us conslder the set: ’

- B e o RN
- o 8y = ((wy,2): X" +y" =9, x>0, 3
{

O3
P .

]

—

[
[
3

= (x,y,2):-x =3 cos z , Q <

- L . O |
(LJYJ3)5' X +y = 9, x

-
]
‘w\
e
o
]

.

[
Lo

z\-

o,

[ = T

xgégiy;iégﬁ

1

B
o

£}

S, 1s.a portionsof a right circular cyliﬁdér;.

¥ = X ‘
ot
o+
—85 -1 a cylindrical surface which is the union of lines '
parallel to the y-ax
“ =
bl D, ’

*

- s

S¢ 1s the intersection of §, and Sg ,/actually an arc of a
helix. The equatlions in the set=builde? symbol for SS above
tells us that :‘the curve 3¢ 18 the intersection of two
surfaces; 1t seems to emphaslze the surfaces unnecessarlly 1if
o the obJect of one's attention 1ls really the curve in which they

intersect.

ERIC
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' : Compare the above representation as the intersection of

#

] %
‘two surfaces with the following parametric representation.

Uss‘
X 3 cos k,

rols .

Sg =< (x,¥y,2): y =3 sin k+, and 0 < k <

Imagine a "particle" moving along the k-axis from 0 to
% . As 1t does, the corresponding "particle" (x,y,2z) moves
¢

ontinuously from (3,0,0) to (0,3,%) along the curve S,

If k denotes the number of time units (minutes for example)
gince the particle departed from (3,0,0) %ﬁfits flight along
the helix, then the parametric equations for Sg may be used
to find easlly the position of the particle at any glven
instant. '

Two problems in differential. geometry are (1) to find the
line which is tangent to a curve at a given point, and (2) to
find the plane which 1s perpendicular to a curve at a given
point. - The parametric equations for 56 may be used to solve
these problems easlily for the arc of the helix in the example.

Thus, corresponding to k = % , We have the point.. .
_3 3 T 3
AL\ 2 ) O 6

calculus as indicated below we find the components.of a tangent
vector to Sg .at Py . (The dots indicate differentiation
t

(9]

Using a blt of elementary

- wlth respect to the parameter k .)

H48

__ 1712;

O

ERIC
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x = 3 cos k % = -3 sin k| =3 J )
y = 3 sin k v = 3 cos k e = _3
3 ) iﬁg_
Z =k z =71 “/ = 1
iy
N . at=k = g
i £

— N

I

" Then [= V;T Vﬁ=7} %} is.a tangent vector to Sg at P .

!
1atsibg§tangént line and the narmaﬁ

rﬂ' r'

It then follows ea sily
plane are as f@lluws

o ve o 2 \
T.L. = < (%,y,2): ¥ 2 ;§F+ 2 , and k 1s real *
. 2 2
z = g + Kk,

0}

,7 4 . N : _
NP = ((x,5,2): ;%(x !_i) v 2(y %) + 1z - q)

m4
b

As anather exampl

7 = [(X;Y;Z) :; + Y + 9] ! . .
his non- parametfic‘equat;on reveqls clearly that ST is the

=]

set of all points (x;y}z): the -square of whose distance from
(0,0,0) 1s. 1 . But there are other .things about the sphere
not clearly revealed by this equation--things Havingg%c do- with
"latitude" and "longitude," for-example. Also this form of
representation has the disadvaptage that the relhtionshipé
‘among x, y, Z are impliait;rthé equation daezéﬁot give'us

any one of the variables explicilly as a funct;,ﬂ of the afhefs,

If we solve for =z 1in terms of x and y we get

z ﬁ_f1/f9 - x° - yE , a "double-valued function." Neither of
the two functions fncluded in this "double function" possesses
paftial derivatives for values of x and y such that

xg + y =9 . of course thils’ 15 a disadvamtage 1f one 1=
iﬂtereated in normal veatofq or tangent planes, or one of the

host of applicatians whilch use these vectors-and planes as

tools,
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4 1 B N =

Anothér representation of this sphere ST ‘!"is the followiné
parametric one based on the spherical coordinates & , Z
: .. . Ao

yJwWith v =3 .-
x=3cos 6 sin ¢ ,

sin: € sin @, 0
LN ~
; 0

[
~I
li
=
IS
St
e
1]
L

4
e}
I
.0
Pe)
oW
L
i

4

j! . ‘ The parameters €& and @ are called the lengitude ana

the colatiﬁhde respectively. The three eguatiane define

X%, ¥, Z explicitly as single-valued, differentiable functions

- of the parameters @ and @ . As one might expect the
pargmetr-ix: equations for ST are more frultful and. easier to
useg for certaln purposes than 15 the nonparametrdc equation
for S, . Furthermore the variables & and ;4 ‘seemgto belong
to a coordinate repi!esentatmﬁ of the Ephere{/ The é and @

the x, 'y, and Z values at the paint!

A final example 1is the cyclold arch given parame@pically

as follows:

{(%x,y): If 3(8 - sin 6 ), y —:——é(l -cos€ ), 0<6 < 2r}.

W
Ny
bad

b
L

O
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ferm as follows:

.» i' . B / -
These parametric equations are ‘derived in a natural waj
from the definition of the ¢yclold. These equationsexpress

«

x and y 1in terms of the radian measure & of the angle

through which the generating circle ‘has rotated. For the
detalls see any of the traditional college analytfc geometry

texts. This same cyclold arch may be given in non-parametric

P ¥

. . Bﬁi 3 -y 1/;, L2 .
X =3 cos ==3—:_,:=-76y,y

g = A0xy):

Lo

x = 6r - 3 cos™"

Of course this 1s less useful and more difficult to handle than
the'parametﬁic equations. And who in the world would ever
discover these non-pdrametric equations without first finding -

the parametrié equations?

%5
[
—



Answers EE!;;;Estrép;gg Test Items

Chapter 8

[

i

L L -1

. AC BD

o o i ", -~ .

(d) A ABC 13 1sosceles, because BD 1= the perpendicular

bisector of AC .
(e) B = /(6 - (-8))

BC = \/(g N G-S)) 24 (b - 72 2 /TOOTIET =

£

ey and m *m

i 8

2

—]

e
]
i
[ull
M|
=

+ (2 =

V196 +

-V
v

M

22

=

]

(f) AC = {(x, ¥): x =2+ bk, y=-4b+ 6k, k is real)

or any equivalent form.

r
w
~

(g) ﬁzi=g?é_y¥£=7r: or any equivalent form.

(h) If vy = 0 - for a point of AC7§ then -4 + 6k
, . .

k = % . Intersection

i

]
[
™

o P

K== . Then x =2+ &

(1) v -7 =3 - (-8)

(1) (- )
(k) (-12 , 1)

LI

(]

Tl
I~
—
“
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A )

(a) 12 !:
(o) 2%

(a) Rectangle (e) : Rectangle

(b)- Rhombus (f) Rhombus

(¢} Rnombus. (gﬁ‘ Square

(d) Square

-
There iz a coordinate system which assigns to parallelogran
ABCD the coordinates az snhown.

: . J
y

D(bg) Clat+b,c)
; {

&

e
Part I. Given DB = AC , to prove ABCD  1s a rectangle
Proof DE = AC dimplies

aé - 2ab + b° + EE — + 2ab <+ b° + ¢© or
-ab = ab
or, since af£0, -b=21b, .
or b =0,
or D 1s on the y-axis,
or /BAD 1s a right angle,
or ABCD 1s a rectangle.

Part II. Glven ABCD a rectangle, to prove BD = AC

ABCD 1is a right angle. Therefore D 4is in the

550
11,
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O
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altitude ir and only if M =

e

!

(b) B= (-
=1

.
("3)§
100

M
e

s

P

=

I i
M2 T
-
1 »
Ll
NS
Mt
i

o o

b
+

L
*"U
——

L
™

(]
M3

Horizontal
Oblique
¢) Vertical

——
(o

The

median of

line containing the
a

‘trapezoild
blsects each of 1ts alti-

Let ABCD Di2b2¢)

tudes, Proof,

(11,-4)
(-13,8)

Oblique
Horlzontal

.
M

100) = (399,-198) ]

C(2e,2c) -

be the trapezold, There

ig a coordinate system Fﬁj/
3 -, b.c
which assigns coordinates b,c)

‘\Lfiu+=,c)

to A, B, C, D as in- &G0
dicated. Thén the v

tﬁe

coordinates of
F and E
perpendicular to

containing the parallel sides of:- ABCD ,

altitufle of ABCD
i (x,2¢)
* Zome X
, “FET is ((%,y): ¥ = ¢ , x
that the midpoint is on “FE .

nece is

is a rectangle with
s as glven, BP | AC.

of the median are as indicated. I

Wy

N

AB and has its endpolnts in

then

In terms of coordinates,

and N =

The midpoint of MN 1s therefore

reall ,

—— -

B(20,0)

f MN
the
o

MN is an

(ggojr,

1=
lines

is an

C(20,15) «

D(0,15)

F
)

%

P liles,
20k , vy =

H

.

"
1]
rd

Py
[®)

"
U

{
i
M e
2
]
b
%

h , % = 20nh

W
Nyl
W

"ﬂ(cxnz o

T B(zo.o) X



Then there are real numbers k and h such that

P = (x,y) = (20k,15k) = (20 - 15h,20h)

Then 20k =
‘ or 16k =

[
e
[}
Lad
W0
o

.and 15k = 20h ,
and 9k = 12h

W
-
P
[}
“—J
n
-

[
o

Then 25k =

L3
M| =
(B2 el

ke
[

o

)

fam
:Dub
oifae}

i}
mi‘\r—a
[l e

=1
[
it
i
5
Iy
jars
i
pa
Ded
=
o
ot
=
L]
pu
pav
]
[t
o)
1
3]
ot
ol
hel
]
I

=
|
1]
=
e
1
l
]
I
|

3
B
I
‘ |
|

mm
=3
M
j ’
I
o
]
J
Ly b=

[
)
!
[
=
——— ,
b
I
I
i
o

it
ILJ'”
v
[
i
C

B
I

o
Lgn
|2
g
!
=

™

I - ue AP 16
k=g =7g =35 - Thus 3z =155 ..

]
5

Alternate solution, using Pythagorean Theorem and)

proportions of a right triangle.

VQEDJEi+ (155

i
v
W

(1) ‘AC,S?VQAE)érf (égfé

T (2 @)
(20)°

(ac)(Ap) ,

AP

il
™
Nl

il
ar]

16 -
“(qy AR _ 16
B) =72

([

Uil

R T
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4 Answers for 111ustraﬁ§%§ Test Items

Chapter 9
(v)
(w)
(x)
- (y)
:yiz)

(o)
(p)
(a)
(r)
(s)

(2)
(v)
(c)
(d)
(e)

(h)
(1)
(J)
(k)
(e) (1) ,
(£) (m) (t)
(g) = (n) (u)
(a) Not necessarily. “BQ" cannot be proved perpen-

LS

© + o + o

+ 0O+ + 0 o +
©+ 0+ oo
++ 0000 o0

o

) dicular to plane ABK on the basis of informa-
* tion given.

) Yes, by Theorem 9-1. _
¢) Six planes: ABK , ABQ , ABH , ABR , ABF , and
§A=E§a' E

the plane perpendicular to at B .

(a) 2 || Z, since planes perpendicular to the same

line are parallel. (Theorem 9-9) ‘
(b)ﬁiﬁfﬁ]liéfk by Theorem 9-6. ' _
(c) Right angles. 1In a plane, if a line is perpen-
dicular to one of two parallel lines, it is
perpendicular to the other.

This follows from Theorem 9-18.

Points F, A, D determine a plane; for if they were
collinear, the line containing them.and the line ~ BC

would determine a plane contalning all four of the
noncoplanar points A, B, ¢, D . Then BC 1is
perpendicular té plane DFA , by Theorem 9-2 (or, by
Theorem 9-18). t

Two 1ines perpEEdlcuiaf_tc the same plane are

_parallel, and any two parallel lines are coplanar.

110

557

153



7. Since ’]E_B*l E and *C‘_f!ﬁl E by hypothesis, “AE | |™*CD"
by Postulate 25. Thus A, B, C, D. are coplanar,
&\ and BADC 1is a quadrilateral. Since ifﬁfl E and
" ™D"] £ , each of the angles /BAD and /CDA 1is a
‘right angle. Since & ||-* by hypothesis, diﬁilsj?
» » * and “CD"] # by Theorem 9-10. Hence each of the
angles /ABC and /DCB 1s’'a right angle. By
Theorem 8-20, the quadrilateral BADC - 1s a rectangle,.
By Theorem 3;25, AC = ED , '

~

8. (a) (W) To(d) (v)

(p) (u) ’ (e) (s)
(e} (r) (£) (¢)

9. A point i1s in the xz-plane if and only if its
y-coordinate 1s O . Therefore, 4 - 2k = 0 , or
k = 2 . Hence the regquired point has goordihates
(4,0,6) )

10. AB =4/26 and BC =4/26 . Therefore, AABC 1is
isosceles by definition.

11. A point 1s in the xy-plane if and omly 1if 1its

* z-coordindte is 0 . Therefore, points in the
' Xy-plane which also lie in the plane whose equation
Es 2X -y + 2 =7 1lle on the line of 1ntersection,

represented by the equation 2x -y =7 .

par
™2

(a) P (5, -5, %

[y SN T
L")
I v
1
(Kol |
s

(b) 3{%?,

2

2

Iy
-
[
1]

'13. Using the equation of a plane, ax + by + cz = d,
and coordinates of polnts A, B, C, we have the
following equations to solve for a, b, and ¢ 1n

terms of d .

.a + 2b + 5¢ =
b + 6c =
2a + ¢
2 1

a=zd,b=-gd,c

plane becomes 2x -y + 2z =5

[T « TR o

%d and an equation of the
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LY

Proof, without céardinates.w

A
(2}

) ‘ S ’
Use auxiliaryrsegments “RE and WF .

Statements Reasons
AL _ ALt il — -
Fy h

@

*xj

1. ARAB = AWHF . 1.
- . 2.

RB =

3

3. RV = VW, 3.
/VRB .and /VWF
are right angles.
AVREB £ AVWF

. VB=YV

4=
"

[N
.

o vk

O“'h
e

Proof, with coordinates.

Choose the coordinate axes
so that vertex H 1is at
(0,0,0) and vertex S

R(20,0,2a)

5.A.5.

Definition of ccngfnegée

for triangles.
Definition of midpoint.
Pefinition of line
perpendicular to a

S5.A.5.

Definition of

for triangiés,

=

W(0,0,2a7

line.

congruence

at (2a,2a,2a) , where
2a 1s the length of

each edge of the cube.
The coordlnates o v,

r
the midpoint of WR ,
will be (a,0,2a) . X
Using the distance formula,

e
VB 3!Vé; + 4a® + ua®

3a ,

VF ;sVég + 4a® + 4a? = 3a
E VF

Therefore, VB



~1. oW

10.
11.

12.

segment,

[ o S
r : * . o f -

1
Answers to Illustrative Test Items

Chapter 10

5
m
3
1
L

\/

12 . .
No, thls does not imply that &AM || MB .

Yes, the magnitude 1s equal to the length Dfxthé



S 13.-43) Teoa, o AN
- TN e L e i P R
) a =xb . . (
_ '15. They must determine harallel reye.
T _’fb) Thelr megﬁitudee must be equal. )
16. PQ .- [6,8] , SR = [6,8] )
T 'Therefore, we must have a parallelogram einee
Y palr ef eppeeite 8ldes are perallel and equal.
& = %‘_§§ ~ = E&
c 17, PR s#[B E] 7 R = [3,2] , thus we hev? - ﬁarellele—
»  gram.. Also Eﬁ = [-2,3] and - (3,2 [-2,3] ,
o - =6+ 6 =07 Therefore two adjacent eidee are '
'; ’perpendieuler Henee we heve a Peeteng;e, since
g we h5ve a perel;elegram with a right angle.:
.. 18, , Pﬁ's; [E -6] , RS = (6,2] , and since
fg -6] + [6,2] =12 - 12 = 0 , the lines are
_pePPEﬁﬂieuler '
\ 19. Let ‘the rhombus be lettered ‘with directed segments
ol as shown in the figure.
7 . =
P
Vaf'
Lx, o
£ X, n+yl,

-m , y - n]-

7+y]§f;;!m,y—n];




D S Since. the magnitudes of .[m,n] and T;,y]
. - are equal, we c;za’n'say '
T T ) 1/111 +n® =VYx 4 3?2 " . BRI
) me + n° = x° 4+ 372:
: ;;Fm2+y2;n226j
and thus the diagmnals are pe erpendicular.
20. Let tylangle ABC have VD, E paints on AB and
A r apecf;vely such that AD = §AE and .
AE = E-AC , and let the segments be directed as
Fshgwn The segments represent the 1ndicated vectors..
-
\ ] = == - 17_1- o == = -
§3+v2;§v4 and vg-t-vlzv)4
. = 1 = P . &
or v, = 3'("4 - VB) and V; =V - Vg ; lﬁi
i ; . = ) l‘—‘ .{
therefore vy = §v R
which implies that DE = -B-EC and DE || BC .
\
\
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. Answers to Illustrative Test Items / ' »‘;

= = - Lo f ] 'Svg -

Measures 2£1Eﬁgf§2éies of a Polygon.

L+ T

v T oo,

Area Formulas.. = - < -y

li

[y 2- =

3!
L,

o i

25 .

T e

Rl

. - - ’ Lo L.
ab + alec - a) , agﬁﬁsg + a(b - a), or ab + ac - éi
Let a be the length of the altitude and 3a
the length of the base. Then )

3a° = 147

a= 7. - ‘

The altitude is 7 . The length of the base
is 21 ) : E

Consider.the figure to be the union of tpi-
angular regions WYZ and XYZ . It can be

proved that YZ 1s the perpendicular bisector
of WX . Henée WP and XP are altitudes of
triangle WYZ and XYZ respectively. The

area of each of these triangles is 24 , Hence
the area of WZXY 1s 48 ‘

R

(a) ad . E
®) Ra-o . -
(e) %d(a +c) .

563

TyF-

Wy



]

i - . = , } e ‘,'V;‘ ; .
- 8. Separate the ‘figure & - - ’
‘ o : into triangular regil .ns . )
4'_5;} ' by a diagonal. The | © e b o

o : " areas of the reapegtﬁé N o\

v ER - B !
triangles are Ebl h ih
and - -é-bhi- 'Iheainaf {
these two areas is T L ~ bz

: b h + b, + b . =
.7 gbih + gboh = gn(b) ce
9. Area ABCD = Area AGFD + Area DFEC - Area AGB -
' - Area CEB . =, ~
4 _ Area ABCD = 234 + 50 - 42 - 48 .
" Area ABCD = 194 .
The area of the field 1s 194 - square rods.
"C. ‘Comparison of Areas.e S
1. Area AADC = Area ABCD bee@use the tr'ianglea :
. have the same base DC arid equal altitudes.
Area ADOC = Area ADOC .
Therefore, by the addition pr'apérty of equality,‘ ’
we have Area AAOD = Area ABOC , ; *
2.. (a) Area parallelogram SRQP 2 Area ASQR .
(b) Area parallelogram SRQP = Area AMIR .
(¢)  Area APNS = % Area AMTR . ‘ -
(d) Area ,ASQR = Area ASFR . :
(e) Area AMIR = 4 Area ARQT .
’ D. y}iggllmeaug P:‘ablems.
. 1. 6 ~ (See figure at right.)
|
o ot ) b 2 2
- -2 1 2
_ ' 5
{% ©o2, k3 (ACc = 13 .)

564

1N~




3. :ia) 384 . (See figure at
. right.) ’
(b) 19.2 (384 ¢ 20 .)

5

-

-

b, 54 (é- +9 .12, The triangle is a right
5. (a) 152.  (bv) 2. |
6. 1643 . (or T8 .) B .

~ E | gg::rdinartié;s?.“

1

z

=2 .

Therefore, BC | AB, and AABC 1is a right
triangle.

1 Slapé of BC

Slope of AC

BC =480 ; AC = V70 . v
Therefore, &
3( V85 - y20)
: -

D -

B(4,5)

v [, I

A
A =
A

|

4.1)C.




il 2. (a) .Rhombus
‘ I&ie.e-*‘iiiaganals are

bisect each ather:."’_;
(b) 24 . 3

3. A=23.
The vertices of
the r-éctanglé
are designated _
by the follow-  (-5])R
ing coqrdinates; —
A(-sgg}., B(-5,-3) ,>
C(%,?é& H] T(ll 5) .
N |
Area of recztang
ABCT = 81 ..

" Area of ARAT

Area of ATCS =

i
m.

"
=

Area of ARSB

b, K = area of AABC
= Area of XYBA + Area of YZCB - Area of XZCA,.

K _ (b-a)(rts) , (o-b)(stt) _

-

_ brpfi-af-as+estof-bb-bt-of -crtat+af
bripeafoa 4 :

R
[

; _a(t - s8) + ;D(ré -t) +e(s - rl .




" F. Area Relations.

2 to 3. 12,

1ar Palygang

|
L
. h'
w o e ﬁg o w =

sk,

Pidid

p=260; a

150 /3 .

It

A

H. Polyhedrons.

1.
2,
3!

(b) Tetrahedron

180 . -

ho < x < 160 .

(a) 5. ° "
Hexahaedron
Octahedron
Dodecahedron
Icosahedron

(c)

w0 o=

12
20



- Part A.

10.
11.

Lyt

. 'm /CPD.= 80.; m /ADC'= 65 ; m /DCB = 115 .

) circle ~

2 \
4= ; :
AT TE

1Ei

© Ankwers to Illustrative Test Items

L -
T

(3]

+
]
-

11.

12,
14,
15.

.16,
a8
“29.

© + 0 © + + O + O +

+ + O + + O O + +
[ \
© O % + + + + + + +

20.

g

. m/APD 36 .- . i’ . .

m AG = 130 ; m BC = 140 . oo

m /CAE = 56

T

g8
Radigs is 3

Zero. The circumference of the circumscribing

x,

Radius 18 /2 /
= N : i

€

&
R



, 13, 2

53

15, (&) on 8 ?f5«;7(a) a&%if ‘. - e

7 (@) ‘exterior . (f) exterior

- : (e) exterior (8) on s
- (d) interior (n) interior

16. 20 v's’i k
. e~ Jgféa
17. m XAY = 120 ; £ %Y
X0Y = 127 ; area of segment =:127 - 943

br ; area of sector

>

]
i
0

L]

Circumference 1s 2743 ; area 1s 37 .

19, . 2% square miles

ﬂk ED.E?Siégesiaf-first pair are -2 and % , of the
second pair 3 and. s_%?i R
7. .. 21. Radius is 15 . Ratio of areas is 222 .
22. AD = % |
. 23, 85 feet L .
- | 2k, 547 . 7
25. One point. (2,1) . t 18 tangent to C .
26, (aj (3,1) , (-1,3)
(v) (1,2)
(c) -3
(d) y=2x
(e) 5
27. (a) 43, -3
(b) Yes.
(¢) No.
28. (a) (3,-4) , (-3,-4)
(v) (-3,%) , (-4,3)
(c) Same as (;)
(d) No paints of intérsecfian

iy o=

569 la.ii




\ - " Chapter 8 . .
; ' ANSWERS . AND. SOLUTIONS o
T . Problem Set 8-1
1. (a) B o1
-— —
e AB

[
re

Fra - -
N i

® 3 ey o h

(€) g - - 9

§
\
|
¥

> 1
mT™

F O
i
\rg

L J

]
|

@ L

(e)

&
|
|

(f) O%

(8)  m——— - .

% (h) ’,,,,, _ _ ;77‘,,,,
A B

- ' ; . All points in this ray.
e

(1) o e —

A B

[ V R .
A and all points of the interior %B .
Q) o ’ —

e =

A B o s

=

All points in thé'inyériar of this ray.




w1
sy

5
5
E

2

L B+
y.4

i
LE .
% '
R & b
G
. % -

L — P———

*>

The interior of a segment and one endpoint.:

The set is infinite.

(f) 1. The set in (b) is the interior of a ray.

2. The set in (d) consists of one endpoint
and the interiqr of a segment.
3. The set in (e) 1s a segment.

&
» Lo
] LE)

(a) 6
(v) 15,
(¢) 3k for k >0 . No values of
(@) 7 ° '

7

—,
M

Mames®
]
-~

+ 1 for }{3%.

+1 or 1-2k for Di&ggéég

= . &

F

. ]
~ =

. (£)

/x for k<O .



L b @) 3 ey e

(e o s (f) 3

(e) 8 (g) 2a

(a) 13 - *(h)y a-b 1f a>D
b-a ,1% b<a, -

L&
o,
o
—
ot

s
)
| |
ME

(o] ]
L]
T
i b
-]
v

(f) r+b+1, (r+b-2)+2, (r%ba§)+4,’
r+b+1, r+b, ., =+ <rp¥b+2

e I % e

sts 104




6. (a) Letter | Row, Seat’ (b) Letter|l Strebt, Avenue

A

2

-
*

¥

¥-
‘@ >

.10

Lo

L]

oo w

¥

-
-
£ 00 oo

C
MZEHEZ o R
Higovm - w
\U\
H O
L

oo m
o O~
-
et
S

(c) Letter || Floor, Row, Table

i
¥ 1

Qo

L ?

\U\
R owWon
s

¥ ¥

-l
WO M W N
n &

=
o W k)
-
=

o5
-
-
=

; . Problem (e) adds
(d) Letter || E or W, N or S |  Elevation

5000 ft.
5200 ft.
5400 ft.
5600 ft.
, 5800 ft.
, 0° 6000 ft.
, 0° 6200 ft.
6400 ft.

=
[a]
L]
-
Qo
[»]

and
(e) B 4s5°

v B’
(o]

[»]

-

=

W

o

Z 2 ;=

MM e E
‘ - ‘

+=

wn

oo by
|
L]

W]

135

[ Lad




s - Problem Set.8-2

. = li . . ) Av

0,0 3.
) — —r—77 f'!1 Vﬂ* T T _
i SR 1145 X

. t0:-2)

(4~35)

, | s
2l (a) (5,0) |

' (b) (DJS)

3. 1, III, II, IV s II .

4, It means that for every ordered pair of real numbers
there corresponds a unique point and for every point
there corresponds a unique ordered pair of numbers.

5. (3;9) » (BSE) 7; (338) . i

P , R ,.Q . .

6. The set 1s a vertical line which intersects the
x-axis In a polnt whose coordinate is 3 .

The set 1s a horizontal line which intersects the
y-axls 1n a point whose coordinate is -5 .

They intersect in the point (3,-5) .

(¢) 15 -points. i

o




—
-

h
»
W

i’!lllll'll ré-*ﬁx
-5 + 0+ S
i + +
-+ o+
F 4+ +
_s} (d)
)
8. (a)
AY
(1,2) (5,2)
N T —
e - — L L i i I — 7§x
a sBegment
v
(b)
3
1,2
Fd E (‘7) = =
ik
- % "
o a ray
!




(d)

a halfplane wilth edge

(4,5)

L 7(4‘2) .

the interior of a

- ~ i - X
v Begment
?Y
Tkiz)-

the interior of a ray

577



(g) 4y
-~ o . =X
=|)
) the interilor of a
right angle togethe
with the interidr o
1 one of 1ts sides
v /
J
s (h) - -
&Y
! plane
) . *9, (a) 4 units. With respect to the x-coordinate
system, on the x-axis the Ruler Postulate may
. be applied
(b) cD =14 Consider A = (3,0) and B = (7,0)
the respective projections of C and D into
the x-axls. Quadrilateral ABDC 1is a
- parallelogram. Therefore CD = AB = 4
\ 10. (E:‘B) 2 (;ldgi) 2 (EQQ)J (Q;l) H (55:4) H (8:5) -
' 11. (-m,6) , (-3,4%) , (0,8) , (2,0) , (w,-2) ,-(4,-3) .
*12. (a) 13 (d) b-a if b>a,a-bifb<a
(b) .13 (e) t -5 1f £t >5, 5=t if t < 5
(e) 4 \ '
13. (a) The set of points in Quad¥ant IV.
(b) Poifts in Quadrant I or on x-axis and to the
right of the origin. T
(¢) Quadrant III. )

578




(d) The Right halfplane whose edge 1s a vertical
. 1ine 2 unite to the left of the y-axis.
(e) At an intersection of a line x = a and a
line y = Db , where a and b are integers.
(f) Any point in the xy-plane.

*1L4, )
A
2} - (b)

[(g) (2.9

() 0—————t——e

- X

IR S % ‘Ij ! I i i‘ z . i i ! i i ek
-4 -12-10-B -6 -4 -2 2 4 6 B I0I2 14
y -2

(c)o—a—-—n
(-7l4=3)

= 16. Thé polnt 1s in Quadrant III, 7 wunits from the

v-axls and 8 uﬂitséfﬁam the x-axis.

Problem Set 8-3




2. (a) (3,5) " (e) (%5,2)
(v) (-3,5) (f) (2a,2)

(¢) (3%8) (8) (-r,3s)

(@) (- £,5)

(®) (x-0)2%+(y-0°2=025 |,

(b) v121 + 9 =4/130

i
+
Ju]

W1

1]
2y
[
L]
O
1]

’ ¥/100 + § = 4/TOF
(c) 4/36 + 68 =4/100
¢YBh + 16 =480 100 = 80 + 20

(d) 416 + 9 =4/25
/50

b
e}
1]

25 + 25

(e) 4/¥8EF ¥ 16 =4/500
/36 + 185 =4/180 500
/256 + 61 = /320
(£) 16 + 36 =452
V81 + 36 =¢/117 169
/169 + 0 =4/169
5. (a) AC =425 + 16 ; BD =4/25 + 16

/. . .
“(b) Midpoint of &

180 + 320

52 + 117

i
u—h-
o
—
o
o
[
o

mw

h—h

[
—
nan
.

[
it

Midpoint of TBD

26 +‘104 ST



£

6. Midpoint of BC 1is (1,2) .
Length of median to BC 1s /10 .

. 7. (a) Length of median to ST 1is

PO - I

(b) TLength of median to RS 1is

il

c

8. (LT, 0+hy (3,2)

s
B
I
fiu]
N
i
e
Lo
0]
L}
]
1]
P b

5 /(3 - 3%+ (0 - )7 =0

V3 + 1)+ G- )P =0

10. AB =416 + 36 = ¢/52 = 2413
BC=¢yT+9 =413

AC = 4/36 + B1 = ¢/117 = 3 4/13
AB + BC = AC ; A, B, C are collinear since they

¥ - Length of median to AC is

cannot be the vertices of a triangle. See
Theorem 6-21.
6)

[N
[

I

= 100
61

+ {y +

[
-

(o

[

]

(v +

M v e

s
™2
I
1
o]

I
an)

(v + or y +

10

or y =

Las!
L
] T e
i
L

]
et
[®]
L]

1)% + (0 +

s
¥
—
b
1

Il
poy?
=

or x - 1 = -8

m
I
—
i
+
@

x= 9 or o= -7
Two polints satisfy the requirémentsz (D,E) and
(ojéT) B ‘

to



1.

15,

%]

= 4/b" + c; K
Ja s af

One diagonal 24/[3,

=
.
W

]

I
=
0]

Therefore the diagonals are congruent.
xy-system: P(-8,2) , Q(4,-3)

Q = ¢/14F + 25 = 13
x'y'-system: P(-6,-4) , Q(6,1)

/TS

Yes, as long as the caardinate uYﬂtem on each of
the axes is establlahed wlth referenaﬁe to the same
(or equivalent) unit-pair.

\hm\

Il

Pr@blem Set 8-5 !

(a) 1V (g) II, IV, the emptjsef

(b) 1II (h) 1, II, ITII, IV

(e) 11 (1) 1, IV

(d) 1 (J) 1v

(e) 1I (k) II intersected with the 1in

(f) I, III, the through the origin bisecting
empty set the angle formed by the silde

of Quadrant II.
(a) (0,-33) , (0,3%)

(b) (-4,0) , (8,0) or (-8,0) , (4,0) .

(e) (0,0) , (o,r) 5 (0,0) , (r,0) ; (0,0), (-r,0) ;
r(Q:O) L] (O!éf) 7
(ﬂ) (‘4;5) H (4:5)

X!



(e)

(£)

(a)
(b)
(c)
(d)

(a)
(b)
(c)

(a)

(a)
(b)
(c)

- A

(d)

P oxx o> o B2>0 U4

(-2 ,0) ,» (0, =503 (=50} . (0, 5.1 .
Jéé Ve o /2 R VZ )

%é%’?o) > (0 j%%s) ; (L5.,0), (0, _5.)

Note that gﬁ%ﬁ = EJ%EE i

Endpoints of . AB : (0,0) , (0,6) or
: “ (0,0) , (0,-6) .
Endpoints of €D : (3,2) , (3,8) or
(3,2) , (3,-4) .
(-3,0) , (3,0) , (o,4%) .
(0,2.5) , (0,-2.5) , (3,0) .
( -3,0) , (3,0) , (0,4) .

(_ %,Q) H (g:o) H (OJ%VFE) B

¥

= (0,0) , B = (7,0) , C = (10,5)

= (e,5) , or

= (0,0) , B= (-7,0) , C = (-7 + e,5) ,

= (55) -

= (0,0) , B= (-10,0) , A = (0,21). or (0,-21)
= (0,0) , B= (4,0) , ¢ = (2,3) or (2,-3) .
= (3,2) , B=(3,-2) , ¢ = (0,0) .

= (-5,0) , B= (5,0) , ¢ = (0,543) ; or

= (5,0) , B = (-5, 0) , € = (0,543) .

= (0,2) , B= (-b,0) , C = (0,0) .

= (0,0) ; B = (b,0) , (%:a) .

= (332) 3 (a, = %) s C = (on) HE e

= (a, - §) » B E(as%) » €= (0,0) .



Problem Set 8-6

Problem 1 1s an exploratory problem designeiita
introduce the work in the next section. It should’ ¢
not be omitted. '

ot

The lines are both vertical, hence parallel, and
4 - (-4) = 8 wunits apart.

2. (0,3), (m3) , (-2,3) , for instance. .

(b)

’<1
[
Ly
|

[y
I
"

xgE gt —

)
3

I B

1

v ‘;if(‘j)

he union is the set of all points each of which

[ gx

. ies in one or both of the two lines. Yes.
* 4

ne intersection 1is the set whose only element 1s o

W
]

the point (2,3) . Yes. Yes.

iy

-

(a) ‘ (b) a line segment

; ' (a) (¢) an infinite number

ERIC

Aruitoxt provided by Eic:



(b) A haltplane

(d) Two halfplanes

| V 77

// 0 /
LA A , LA AV A A4 & '
S0, 2 X
E - %

8. (a) The union of two
intersecting half-

planes and the edge

of one of them.

{((x,¥): x >3 or

y £ 3}

The union of a
right angle and
its interior.

WA
b
W




.] Ay
(c) The union of a
' right angle and - y —— -

7

(d) The union of a
réctangular region
and three of 1ts
sides (except for

two endpoints),

9..(a) ((xy)i y=7 ory=-3) .
(b) ((x,y): Ix| =4} or {(x,y): @ = -4 or x=1k)
(¢) ((xy): x=-5, y =23},
“(a) ((xy): v =0}, |
Let P(x,0) be in
((x,¥): ¥y =

2 > =3

Then (EA)é'z (PO)® + (0A)"

I
(o]
—_—

\ : = x° 4 (-3)° = x" + g

and (PB)E = (PQ)rg + (DB)é sy

i
b
X
+
—
1
Cal
st

and : FA

il
o
fus]




Converse: “Let P(x,y) be so located that PA = PB .

;}i . = —— N o e 1 ' A T B .
Then AOAP = AOBP by S.S.S. Then /POA = /POB ,

, and  (x,¥) € ((x,y): ¥y = 0)

s
]
o
I
I
L
|._
e
1
L]
«
I
[e

10. Sets are equal if and only il their conditions
e :

/

ince their conditions

[

(a) The two sets are equal
are equivalent,

(v) The two sets are equal since, using properties
of order, the conditions can be shown to be
equivalent.

(¢) The two sets are not equal since proper use
of order properties indicates that the
conditions are not equivalent.

i (d) The two sets are not equal. The conditions
are not-equivalent because -2x + 4 ¢ 8 1is
equivalent to x> -2 .. )

, TR S ,
(e) The two setd¥aPé,not equal. Every negative
"3 1) [ - s

e

(b) 4, &, 12

[ (g

(¢) 5, 2, A'C' = BA'B!,
(a) "

(e) Parallel lines intercept proportional segments
on two transversals, and the definition of the

ERIC

Aruitoxt provided by Eic:



.(g) (1) P 1lies in ray AB , such that B .is
between A and P
2) p=B.
(3) P lies in AB, but P # A and P # B .
(4) P 1ies in the ray opposite to AB . )

Problem Set 8-7

Jt

1]
—
+

il
g
..H..
]
~
-
[
[
]
0]
o
[

= ((x,y): x =

"
-
+ ]
==
M
=
+
o
=
O
L

=
B
il
i
+
o
-
"
b
[»] =
—

AB = ((x,y): x

AB = [(%x,y): x =1 +}

]
Il
-

Ray opposite AB = {(x,y)! 3

<

it
=

4

- ]
=

1] -
oo
™,

iz
L]

AB™= [(x,y): x = -1 + 3k ,

((x,¥y): x=-1+ 3k,

]
0
=
o
Joms,
-
[
=
Mgt

o=
I
[l
LY L

\B = {(x,y): x= -1+ 3k,

td
I
L
~
pe]
[,
=~
Nt

A
Ray opposite AB =

] !4 .
—
3
]
|
—

‘ - . \ - .
(¢) AR = ((x,y): x =3k, y =2k, k 1s real) , etec.
k

(a) RB™= ((x,y): x =

(e) ME™= ((x,¥): x = -1 +

- H’ 7' : - _ <
(f) AB = [((x,y): x=-3+3k, y=-2+ 3k,
k 1s real) , etc. 7
(g) AR = {(x,y): x=a+ (¢ -a)k , y=Db+ (d -b)k,
k 1s reall , ete.
(h) BB {((x,y): x =a + 2ak , y = 2a + 2ak ,
k 1s reall} , etc.

) i,
-
P
ot




1+k,y=14+ 2k,
2k) 'with k = 2 ,

i

2. The midpoint of ((x,y): x
0<¥ <1} 1s (1 +k, &
or (%j 5) .

-
By +

- 3k) with k =

The midpoint of [(’x;y‘):; x
0< k<1 is (-1 + 3k,

¥

e

or (3 %«) “

3. (a) (8,12) (d) (2.6,-6)
(b) (- %, - (e) (0,0)
(¢) (17 ©) (£) (5 =)

b (a) (16,0) (@) (-2,-4)
(b) (7,4) (e) (9a,5b)
(c)  (8,7) - (£) " (-3r,7s)

v [oN]
h o

! B4
Py

JNJM -3

5. (1, §) 5 (2,2) .

= 1 1
6i (g: - E)

Il

L
i
Ll
i
L
(W,
I
I
(]
M

-14+43.2=5,
(5:;3)
85)* -1 + 3 0C

’ ' (299,-297) .
(e) x = -1+ 3473 -

(343 -1

, -
) ; = - 2 - - -
irk(d) X=-1+3r-, y=3-3r, (-1 +3r ,:3 - 37)

8. (a) x=-1g2(-2)=-5,y=3-5(-2) =13,
)

7. (a) x

»
1l
-
O
Oy,
W
T
A
(e
LS
i
o
I
L
pr
@]
O
]
[
M
’!@\
|

1}
oW
S
I
-
-
R
it
[
I
Lt
P

it

e
il
Lot
)
al
o
1
(1w
@]
!
Il
-
O
Lt
-

(b) x = -1+ 2(~20) = -41 , y

i]
I
=
+
M
——,
i
L]
(l
p
il
i
p
e
I
Lt
1
al
——
I
Tl
.11
o
i
It
12
N

() x = -1+ 2(

]
It
-
+
o
]
o
L
n
I
I
M
e
i
[
]
4TI
——

(d) x =




(b) -

(c)
(d)

ot
o

o (b)

(a) -

If P 1is between A and B then AP + PB = AB ,
that 1s PB = AB - AP . Since, AP = 3PB , we
have in this dise AP = 3(AB - AP) , that is

AP = %AE . Thus, using the me%hcd of solution

of Problems 7 and 8, P = (2, - F) .

If B 1s between A and P then AB + BP = AP ,
that 1s PB = AP - AB . Since AP = 3FB, we
have in this case AP = 3(AP - AB) , that is

AP = 3AB . Thus, using the method of solution

‘of Problems 7 and 8, P = (5,-5.5) .

If A 15 between B and P then PA + AB = PB .
Since AP = 3PB, we have in this case

AP = 3(AP + AB) , that is AP = - 3AB .

But this is impossible, since the distance AP

- cannot be negative. Hence there are two

solutions P = (2, - %) or (5, -5.5) .
| n Part (a) we find

two solutions: P = (-e%, 1;0 or (- %; %%) ;f*

y =2+ (2-2)k, k is real)
= {(x,¥): x=-1+6k, y=2, k 1is real} .

It k=0, (x,y) = (-1,2) . If k=1,
(3§Y) = x,y) = (‘13;2

I

I
(5,2) . If x= -2, (

[(ij)g X = K; + k(xg - xl) ;s ¥y=a+ k(a = ) )
k 1is real}

+ k(xg - xl) s ¥y =4a,

et

= ((x,y): y = a}, which is the
horizontal line “CD . .



' () (xy)rx=a+xa-a),y=y +kiy,-y),
, k 18 real]
= [(xjy)3 x=a,.y g'yl + k(yE é;yl) sar
k 1is real} . : A
- = {(x,¥): x = a} , which 1s the
T vertical line “EFT .

11, (a) 'Eg[(xsy)"s':‘:”’so;'y;ﬁi?k}Og'lfgi] -
= {(xy): x=4k,y=0, 0<k<1)
((x,¥): x 4E;y2353kgcgk§1].

({x,¥): x
((x,¥): x
[(K;Y)g X

3 g 3

[]
[

-3+3k,y=3k, 0<kgl)
-3 +6k ,y=0,0<k<1)
3%k , ¥y=83-3k, 0<kg1).

(b) T
BF
EF

E 2

12. (a) ((xy): x=1+2k,y=2-%k, k is reall .
(1,2) for k=0,

Y

(3,1) for k=1. ?
-
(v) [(x,y): x=2K, y=k, 0<k <2}

(0,0) for k=0, and
(4,2) for k=2
These are the N
endpoints of the IFY
segment.

L
3
[
—

]
of
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I S . LA

(e) {(xy): x=-1+k,y=-K, k>0)

yields for ' ’

=0, (-1,0) and

for k=1, (0,-1)

* and these are : |

_ points in the ray, .

R -- the firat belng its
e : Endp@iﬂt;

£

] (a) [(x;y)=x5kgryg"'k:j ESD]
| yields for k = 0, (0,0)
the endpoint of the ray,
=1, (’111)
another point in the ray.

and for k

[]

(E) ’[(i;Y)f%I =3,y=k =2 £k £ 3}
yields for k % -2, (3,-2) ,
and for k =3, (3,3) ,
and-these are the
endpoints sztgg

segment, S )
i \\ /" Y k3

-l i " ,757,, P 1 i Ex

Lo

592
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13.

15.

A

(a)

(b)
(e)

(d)
(e)

ir
Ir

I

X

1
LE

A(x,y): x'= 3k il,,y =3 -5k, Kk 1s.real) . .
. Ir_ 3 == - . =
I

IJ 5 » k gi. é, 3 yag -7‘;;

le{g—l,xg—l}!

X=29 , k=10, y'= 47 .

Q;ks%,:ﬁs%;

y

D= (0),E=(63),F=(33) .

EA

DC

Each

[(Z:Y)i x
[($§Y): X =

of these segments contains
Take k = % in each case.)

]
o
1
L
=
o
in

6 -6k, vy

:VY = ék » 0

nﬁp

p={(x,¥5): x=a+ck,y =b + dk., k 1s real} .

() If e=0, p

(v)

(c)

If

If

It

((x,¥): x » ¥ =b +dk,

k 1s real)

{(x,y): x = a} , which 15 a
vertical line.

0 = {(x,y): x=a+ck,y=Db,
k 1s real}

{(x,¥): ¥y = b} , which is a
horizontal line.

[oh
I
o

L]
o
]

O =10, then
((x,¥): x=ck , y=dk, k 1s reall

a
p
k
in p .

I

0, (x,y) = (0,0) , which is a point

i

503l 5
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Problem Set 8-8a
1 (a) § () A

(0) - % (&) -7

W

(5N -1

(¢) -1

(d) Any real number except 5 .

W
/)
N
w S =~
=
o
Hw

——
m
M
1
o5

(b)

nofuo o

&

AFLO) |

'

. slope of TC

&l
it
=3 m

Slope of

1]
I
v T

= slope of CB =

=
|

Slope of

slope of TP .

Slope of RQ = %

- % = slope of PQ .

_Slope-‘of B8R

fiﬁ r 594
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5.

(a) Negative (a) Negative -

(b) Zero ' -~ (e) . Negative

(c) Pesitive-. . ° “(f) Positive .

Positive slope indicates "uphill" from left to .
right; negative slope "downhill" from left to right,

% > %‘8’% , 80 seg‘fnent from (0,0) to (100,101)

is‘steeper;

k 1is real)

:lu-
m
- )
q 4 Lt
et
H -
I}

L

]

]
=
L]

I

contains P 1(x0,¥3) = (3,-1) apd P, (xE,yg) = (1,2) -

o YE = yl B 3 3 . L o —
Then X -3 -=n is the 8lope ‘of AB,f




) . cauld have been laeated in.several ways.

=

S

The second ﬁaint in each éf the preeeéing grapﬁs
Of cour

A théﬁsame line wauld reault in every . case.

R
X
N2, r)
d)
11, (a) ((x,y): x =2k, 3k} .
(b) {(x,¥): x = 5k ,.y = -3k} or ‘
- ((xy): x = -5k , ¥ = 3k}
() ((xy): %=k, ¥ = bk]
N (@) (($,¥): x =2k , ¥y = rk)
. Problem Set 8-8b
o, ,(a)fk51§pe of B = % ; slope of “GD"= g .
Slope of D= 5 ; slope of B =5 .
- , o ] S , =l 1 -
(b) Slope of AB = {5 5 8lope of "CD = 75 .
. s
Slope of “AD = O ; slope of "BC=0 . |
(¢) Slope of “iB"= % ; slope of TP"= % oo\ .
& i i ) B \‘
slope of D™= - % ; slope of "KC™= - 7 .
2. Slope of “iB"= - % ; slope of D™= - % -
3. (a) Slope of “E"= 4 ; slope of *BC™= 4 ; yes
LL + 1 -8 - .
(b) =% #1@+5* No.
(¢) Slope of “HB = A 1 ; slope of 0™ =100 _ 4 3
) , =300
yes, "
j:é
152
J




e, ~ /

*

e, (d) Slape of “AB"= gE 3 Elcpg,cf-iﬁ?=s1:;

. || ChY ) Lo
. Slt;\pe of “Bc"= T% =1 "AE" 'cp-' . o

3 % .3k s ¥ = 8 + Ek k iz real}

[(x,y) x
ytelds  (3,8)

- ylelds (6,10),
ylelds  (0,6)
'yields (9,12)

-1+ bk, y=0-3k, kis real}

]

oW
= o

I

it
I

Qo X o % o= m‘””
1]
[
ot

yields (-1,0)

yiElaS (3;‘3) :
elds ' (-5,3) .

yie;gs (7,-6)

I
o

~m R OR R =
oo
LI
et
b
o
i
=t
oM
(%]

\F
(AN ]

3+3k ,y=4+2k, k 1is reall

[(x,¥7): x

+
x=3+ 3k, k 1is real.
Parametric equations:

b
[]
=
+
=

s k 18 real.
k 1s real}
k 1is real.

I
ol
1
=

-

(b) [(XJY) ==1+k, y =3

= k 3 k iS’ Peai.

a

‘o
o
e
o
5
ot
3
i
)
I
g
-
(2
ot
o]
pa
[
——,
M
] 1]
W
f
1
+
~

CD'= {(x,¥): x =2k , y = -3k, k is real} , or

k 1s reall
-h _ 1

L]
UI
!
L]
b
~
St
H\
It
I
]
-
L]
i}
L
Foy

7. Slope of a¥

However, k = 0 yields (1,2) in a ,
h = 0 yields (3,-1) in b,

1-2_ 3,
i - Rl

Hence a # b .

8. Slope of p 1is 4 . Slope of q = 8 . These are
] N T

eéﬁal. Also (1,3) 4son p andon q . So,
P=q.

Jos,
&
Lo




= ' 9. (a§§531ape of am‘s %’; slcpg'af ns=s - % ; m, n
. ﬁ *

not parallel. Therefare m and n interse
in one point." _

() we'segk ((x,9): x=1+2k , y=2% 3k “and

) *X=1-2h,y=2+3h; h, k real}

fue]
)
o
2]
o
L]
[
+
(4v]
-
[}

1—Eh : ’

2+ 3k =2+3h .-

‘That 1s, k = -h and k=h ., -

So, k =0 = h., which glves

[(X:Y)' x=1,y¥y= 2} . T

So, the pgin9 of intersection is (1,2) .

10. Slope AB =3 ; slope BC = - % ; slope CD = % ,

-

o "slope AC 1% ; slope ‘AD = - %=; slope ED = - 10 .

AB || CD ; BC || AD . The segments are distinct

slnce thelr endpoints are different.

11. Slope 1B = =-§ = slope fﬁé.

Slope BC
collinear. Hence ABCD 1s a parallelogram.

-3 = slope AD and B, €, A are not

[]

1

definition of vertical lines, if m is a vertical
ne, it is parallel to the y-axis, If n || m,
then n 1s also parallel to the y-axis and hence
is a vertical line. (Recall that, in this text,

a line 1s parallel to 1itself,)

12,

o

g = gg) = (5:1) .

3

il
o 4=

il
[ EaT i [




- 14, (a) Slope =4,
» slope =, K ;

IR
mw"f::'l = =

‘ | (\?pe
' ; slope

(b) Slope

. It is false that ABCD s a
parallelogram. o

[
u whro

“slope

]

i

. 1t is true that PQRS 1is a
parallelogram.

] i
Wi
il

éélgpe

4243
‘ ] :
]

Wl

. " slope

&

n-20 0

= . 1
P> Twm -3
T 16. If “PQ”||®RE” then either they both have the same
slope or botﬁﬂ?ré vertical. 1In case they are
b, 8 a=b-1,
In case they have the same alope, T3 -5 —%F’

1
o]
N

I

2] Y]

vertical a = 3 and b

that.is 4% - b=3 -2 or a=b-1. On the
other hand 1f a =b -1 and 4 - b # 0 then -
= - 4""—;%3' FI) T 3 , and “Pq”| [7RS".
Further, if a=b - 1 and

L - b=0, then b=4 and a =3 and both lines
are vertical and again_iﬁﬁ?lliﬁgkibdFurthermcrg, in
case “Pa | [*RS",*FG"=-"R5" if and only if “Qr"|[*FQ".

Now, slope “QR = T%“E . 8o "AR"| IR implies

or a=Db. But a=b -1, =so

[

[}

A

Problem Set 8-9 :

- l_y-4

[

™

M
L% U ]

)|

[

[}
(50 LN R

3
y -
4]
y




[y ]

——

[+

-

rq
¥

5=% x - (;3?) ' T
7’;"*%(1 - (-2) -
y - (-2) = 2 (x - (-3))

*,
— —
o] o
gt L
@
! 1

. —
1] [
Mot e
b
J 1
[
[] ‘
v
(o
("] H
I\
——
"
LW
L

3,
)

e

I
Hd
| ]
o
I

or y = %;c (Midpéint of
I = (3,4))

]

x + % (Midpeint'af
iE = (%,3) ; mid-

y or ¥y
point of
KT = (3:1)

=X + 7

(-1 _y -6
(e) }3;%2%;—5; or y

(£) “AB"= ((x,¥): ¥ =

"= ((x,y): ¥ = -(x - 5)}
Solving these equations

(1) v

(2) v

Il
]
LS

]
[usd
[}

=X + 7

X

I
I

y %— s X % » therefore the point of

intersection 1s (%— s %—) .

600




6. (a) .y -L4=2(x+2)
(5) y - b =x+
(o) ¥ =
(@) y-4-=

‘ V(e) y - U :=§(;+ 2).

L

4=

L] |
o M

il
1
_—
"
+
1o
—

3 (£) v- 4% - 3x+2)

[ [ ‘

_ 1 I . _
Tomymdamge o2, mon 2, m -
Hence, p || 8 and q Il r. o .

8. (a)- intersect in one point since p-# q and P.Ha.
- | RN 3 7
(b) P=4q since p || ¢ and the point (8,0) 1is

) on both p and q .
(c) p |l 4@ since slopes are the same but p ¥ q
since (8,0) 1s on p but nét on gq

It 1s\the equation af a line since it 1s linear.
it contains (a,0) and (0,b) since

9.

0, b _
End. E!F'E;l; .

"

10. If x=0, y=D>b . Hence the point (0,b) is on

the 1line and this is the point of the y-axis which i
is on the line, If x =1
(1,m + b) 1is on the 1

m+ b ., Hence;
.ine, The slope of the line
and (1,m + b) as

~
[}

wofro

2. (a) !% ’ (c)
() 7 (a)

I
roho

160




3.5 g =3 g% B-H -,

1 -

_ -6 - 2 1 _b+6

5. mFﬁ =T = -2 ;:mﬁﬁ =¥="F5TT |

‘ which ylelds b - 5= 2(b'+ 6) or b = -1T .
“6. (lr) For, k = 0 , both " and o~ contain -(1,2) .-
L(E) mIE = % , mEﬁ s;% .. Hence (mI%)(mﬁﬁ) = fl )

so BB |CeT.

D = ((x,y)tx = -2 + 3k , y =2+ 4 , k is real) .
8. (a) ((x,¥): x
() ((x,¥): x =3+ k', y =2+ Uk, k is real)

-J

3+4 ,y=2-%, k 1is reall’
: )

(¢) {(x,y): x =k, y=-3k, k 1s reall

™~ ' (d) ((x,¥): x =3k , y=%k, k 1s real)

(E) m = =3 jiﬁéﬁg {(x,y): y 2 ig(x - 3)] ’

mo_=%, W= ((x,y): ¥y =3x)

=3x + 11 and* 3y = x)

(D} = ((x,¥): ¥
(DY = ((x,y): ¥
( (D} = ((x,y)i ¥
33, 11
D = (ﬁ ﬁ)

- m ;m
™ ©® ' °
; therefore /B

=3(3y + 11) and 3y = x)
% and x = %}

Lr's]

=]
]
1l
]
']

[}
]
[y
[l
(4]
o

a right angle.

[

; therefore /C 1s a right angle.

]
]
—

=)
o
L a—
=i
N

(I}

[]

e

; therefore /D 1s a right angle.

I\'E = ; therefore éA* is a right angle.

™,
=
|
e
-
a\
—
]
]
]

602
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—‘.‘lr_

v 10. kg) 't(x;ylsi; =2 +k ;iy -2 - El, k 1s real}

(b) [(i,y):rz =k, ¥ -;% + 2k , 7k 18 real)

vf:: o (e) ;I(xiy)s X=mk,y=2 ﬁgk , k 18 real}

B S Qs <7 § + Ly =§-aky k is real)
, i _

lI.‘;% = a—sp if a #G . 7 y . .

5 , If a=c, p is a vertical line and q 1s a
Horizental line.

"If d=b, p 1s a horizontal line and q 18 a
rtical line, :

% 12, (a) x Eg |

13, Plot 'A(S,E) . Through A draw a horizontal line
and on it locate D(10,5) . Through D draw a

vertical line and on it locate E(lD,l)

18 the required line. (%= sT 0 a%

14, (a') m = -2, Plot $(6,-2) . ®RS” 1s the line.

(b) Plot T(7,1) . “RT" is the line.
15. p= {(x,7): x =2+ Bk‘, y=3+2k, k 1is real}l

(a) kx =1 ylelds (5,5)
-1 yields (-1,1)

(b) | p and (2,3) on q;
((x,y): x=2 +2k , y =3 -3k, k 1s real)
1 yields (4,0)

. -1 yields (0,6)

aaa w5
i \I._

F
]




" 16.

T

(a) Ac!ﬁ‘/(a re-a)° 7(13 vo-b)?

i
"l

y&a +c - a)g +i(b - b ;)E ; AC = BD ;

g B
Ite
&l

@

() m__
AC

o

6 - b
T3

| ]
forf o

+
;’_,

Hence -AC | BD .

(¢c) Midpoint of AC = (&

Problem Set 8-11

Yes. A rhombus has all the properties of a
parallelogram, slnce it i3 a paralledogram. No. A
parallelogram 1s not necessarily a rhombus and

of a rhombus.

L]

(a) A.rhombus is a square i1f and only if it has
~a rlight angle.

(b) A rectangle is a square if and only if two
consecutive s’ les are congruent.

(a) 1If a quadrilateral is equiangular, then it 1is
a rectangle.
If a quadrilateral 1s a rectangle, then it is
equiangular.

I

(b) 1In quadrilateral ABCD , /A ¥ /B ¥ /c
gherefore ABCD is a parallelogram by
_ Theorem 8-19 since opposite angles are congruent.
Since 1t 1s a parallelogram, consecutive angles
must be supplementary. If /A and /B are
both caﬁgruent and supplementary, then each must
be a right angle. Since a parallelogram with a
right angle 1s a rectangle, ABCD musat be a

/D

rectangle.
604
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5;

(a)

(b)

(a
(v)
(c)
(d)
(e)

Conversely, if ABCD 1s a rectangle, thég ™~

“ABCD . 1s a parallelogram with at least one
right angle, say at A

By definition of a parallelogram, AD || BC .

Therefore, the consecutive interior angles are
supplementary; m /A + m /B = 180 . Since it is
given that m /A = 90 , then m /B = 90 .
Opposlte angles of a parallelogram are congruent
by Theorem 8-19; therefore m /C = 90 and

m /D = 90 . Therefore, ABCD is equiangulaﬁg

If a quadrilateral is equilateral, then 1t 1s
a2 rhombus,

If a quadrilateral is a rhombus, then 1t is
equilateral.

In quadrilateral ABCD , all 4 sides are
congruent. Since opposite sides are congruent
then by Theorem 8-18, we know that ABCD 1s a
parallelogram. Since this parallelogram has

two consecutive side§_congruent, it is a rhombuas,
by the definition of a rhombus.

is a parallelogram with two consecutive sides
congruent, say AB = BC . By Theorem 6-6, we

g

know that AB = BC and B = DK . By the

transitive property of congruence, we know that

all four sides are congruent and therefore

ABCD 18 equilateral,

True. Theorem 8-20.

True. Theorem 8-20,

True. Theorem 8-21,

True. Theorem 8-21.

Tfue! If regular, then it is equilateral and
equiangular. This makes 1t a rectangle
and a rhombus both. When both, 1t is

called a square.



(f) True, In parallélogram ABCD , AABC & ACDA ,
by S.5.S. Congruence Postulate or X.S.A.
Congruence Postulate,

(g) - False. Consider the case in quadrilateral ABCD

£

when we know only that AABC = AADC

Problem Set 8-12

(2¢,2d) .
(e,d) , and

[

In AABC , A = (0,0) , B= (2b,0) , C
Then we find the midpoint of AC , D
the midpoint of BC , E = (b + ¢, d) .:

[

]

Since D and E have the éame y coordinates,
'OE® 1s a horizontal line and parallel to the x-axis
which is "AB . Also, by the distance formula,
DE = |b+¢ -c| =
AB = |2b - 0| =
J/ . Therefore DE = 3AB .
The advantage 1s that the coordinates of D and E
are simplifiedé
12. BSlnece each side of ADEF 1s half of a side of
AABC , the perimeter 1s half that of AABC .

k™

3. XY = 2MN by Theorem 8-22,

4, right triangle. AB 1s on the x-axis. AC would be
on the y-axls. Thus two sldes of the triangle would
be perpendicular and fA would be a right angle. .

b’
[
b




o

A(-2a,0)

Using the coordinates suggested
’e in Problem 4, we fiﬂd the
{ coordinates of D , the midpoint
QL\Q of BC , the hypotenuse.

D= (b,d) .

B(2b,0)

Then by the distance formula,

Thue D 1s equally distant from A, B and C
Let- BB be the base of 1sosceles triangle ABC .
Then, A~= (-2a,0) , B= (2a,0), and C = (0,2b) .

Use coordlinates suggested in Problem 6. ILet D be
the midpoint of AC and E be the midpoint of B¢ .
Then D= (-a,b) and E = (a,b)’.

9,

Therefore * DB = ,E.+ the length of one

ﬁtJ
il

the length of the other

fit

median and EA = 4/9
median, Therefore the medlans are congruent.
Let iA = (-2a,0) , B = (2a,0) , C = (2¢,2d) .
Let AE and BD be the two congruent medians.
Then D = (¢ - a, d)

E=(c +a,d).

]

We are given that &AE 2 BD , therefore
¢ (2¢,2d)

since AE = yﬁc + Ba)E @ a°

2

N~
and BD = yﬁc - 32)° +d

we know that
) 3 .
(e + 3a)® + d° and thus

(e + 2

[#%]

o

il
T,
o] X

I

L

iy
N



Therefore, either (1) ¢ + 3a =c¢ -
¢ - or (2) ¢ +3a = -(c - 3a) .”

I
')

In other words, either (1) a =0, or (2) ¢
Since a cannot be O, c¢ must be O .

; : a e 0 .
Thus AC ={/a® + 4d° and BC =4la® + 44d° .

Thus AC = BC and the triangle is #isosceles.

9. The medlans to two sides of a triarigle are congruent
if ‘and only if the triangle is isosgeles.
., i ]
10, (cB)?"=(b - a)? + c?

L]
(Ac)? = b2 + ¢°

(AB)E = a®*

&

a since a 1s taken in the positive

]

AB = |a|

' j X-axls,

AR = |b] = b since b 1is positive, /A being acute.
(

cB)? = (AC)® + (AB)® - 2AB - AR , since

Therefore

(b - a)g +c° = (EE + QE) +(a) -2 -2 - b

e

2 ; 2 . -
(AC)® = " + ¢ and (BC)® = a

[
[

- 2 2 L2 2
Thus (AC)® + (BC)® = a" + b° + ¢°

Il

i8]

2
=1{b - a)” +c¢c

2 o 2 2 ; we
b° - 286 +a” + ¢ _ a® + 2ab + b” + ¢
= =<7 — F —— 2 V 1y

2 2 3 -
=5 = N ,r'j,é. 5 P L)
which simplifies to 5?77+7§b77+72§ = a% + b2 4+ c° .

=

- 2
) a =) ;
Therefore, (AC)” + (BC)® = iﬁ?lE + 2(MCc)° .

v




3]

N Problem Set 8-13

If ABCD 1is a paralléiégram, then AC and BD

bisgect each other.

' (0,0) , B = (2,0) , C= (a+b,c),

Proof: A
D = (b,c) by Theorem 8-23.

Then the midpoint of AC 1s (§;%%£=, %) and the

midpoint of BD * 1s  (Zm— , %)
Since the midpoint of AC 1s also the midpoint of
BD , the dlagonals blsect each other.

Part (1). If the diagonals of a parallelogram ABCD
are congruent, it 1s a rectangle.
A=(0,0),B=(a,0),C=(a+b,c), D=

By Theorem 8-23, we must prove b = 0 .

(b,c) .

We know that AC = BD , therefore (AC)2 = (ED)2 ,
and /
2

. o
(a + b)23+ e = (b - a)2f+ c
b

(
Therefore, (a + b)E = (1 a)2 and
either a +b=Db-a or a+b=-(b - a)
Since a #0 , b =20
Part (2). If ABCD 1s a rectangle, the diagonals
are congruent. A (0,0 B= (a,0) , C= (a,c),
D= (0,e) . AC '
Thus AC = BD .

part (1). If the diagonals of a parallelogram are

il

perpendicular, it 1s a rhombus, )
A = (0,0) , B = (a,0) , C (a + b, f3) , D= (b,c)

where a > 0 . We must prove a

, - c : S
8lc = o = : B1lon
Slope of AC a¥b’ lope BD:

-
Since m o 5 %,iﬁl ,

a 57 (bf—"f = -1 and c“ = - (b° - a
2

Therefore ag = b~ + ¢ and a = {/1 T .




Part (2). If ABCD 1§ a rhombus, iC | BD .
—
(0,0) , B= (h® +c?, o) ,
e ]

A ' + b, ¢) , D= (b,c) where B
1s on the x-axis to the right of
Therefore, the slope of AC = — . —— w——— and the

- ‘l/b'+c"+b

slope of V,Dr: o — and
' "V,bg+c,:£-b

2

(9]
Il
e

A - B (1) If ABCD is a parallelo-
gram and AcT bisects
/DAB , then ABCD is a
rhombus.

ABCD 1s a rhombus,
blsects /DAB .

H

(2)

D — -

C

b

(Note: We do not use coordinates because students
need trigonometry before they can write the equation
of "an angle bisector.)

") Proof:

Part (1). /DAC ¥ /BAC by definition of angle
blsector. 'Since AB || TC , /BAC ¥ /DCA because
they are alternate interior angles. Therefore, by

s the trarsitive property of congruence, /DAC = /DCA
Then, si:pce two angles in AADC are congruent, the
sides opposite those angles are congruent. 7D ~ TC .
Thus ABCD is a rhombus.

ire

Part (2). ABCD 1s a rhombus. Therefore, AD = AB s
DC = BC . Also, AC = AC .AAIDC AABC by 53.8.8.

Therefore /DAC = /BAC since they are corresponding
angles. AC 1s the midray.

e




5. A rectangle is equiangular and all angles are right
angles. Its dilagonals are congruent.

6. A rhombus is equilateral. Its diagonals are perpen-

dicular and bisect the angles,
7. Yes. Yes. A parallelogram, a rectangle, and a

rhombus.

(]

Parallelogram Rectangle Rhombus Square

opp. sides = 4
opp. /s %

consec. /s supp.
diags. bilsect
diags. z no
diags. 1 no no 4
diags. bisect /s no no 233?

NN NN
NN
RN

no

equilateral no no
equlangular no / no
regular : ne no no
]
9. Q = set of quadrilaterals

.
NN N N N

P = set of parallelograms «
: R,= set of rectangles R
R.= set of rhombuses

5 = set of squares
means "is contalned in", or "is a subset of,"
and has the transitive property.

<
SC RIC PC Q.
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Problem Set 8-14

D2d2¢)  ¢(2b,2c)

A00)

~ B{24,0)

We may assume wlthout loss of generality that a >0 ,
b>0,b>d, c>0. E=(d,e) , F=(a+ b, c).
Thus EF 1s a horizontal line and is parallel to

“DC. and AB .

Also, EF = a\+ b - d

AB = 22 .and IC
L

il
n
o
I
(¥
o8

(AB+ DC) =a +b~-4d

M

Therefore, EF = =(AB + IX)

11 ,
10

2. (a) =x
(p) =

(¢) x =

Lo
20

s ¥ = .
In ABCD , AB || TC .

If m /A =100, m /D =80 we would not know the
measures of the other two angles.

If m /A =100and m /C =70, then m /D = 80
and m /B = 110 ‘ '

L




AY
|e0) _clb,e)

Glven a trapezoid, label it ABCD and set up an
xy-coordinate system so that A = (-a,0) , B = (a,0) , v
¢ =(bye), D= (-d,e) , with a >0, b >0, L
¢ >0, b>-d. Then b+ d# 2a . (For if

b+ d 2a , then AB = CD and ABCD 1is a
parallelogram, not a trapezoild.) We are to prove

]

two statements:

(1) If AD

(2) 1f /A
(1) If AD = BC then (AD)® = (BC)? ,

BC , then /A = /B .
EBC

/B , then AD =

e

(-d4 + a)g +¢“ = (b - a)g +c°

- -b + a ,

|
jo}
+
o
il
Ii
W
o}
in]
I
+
W
I

¢
i)
]
o
+
L
O
H
o
]
ph

But 2a £b+da,

therefore b=4d

x>
o
1]
W
o
+
o
—
+
2]
3
i o
- ‘
u :
w
— |
2
—h.
D]
|
H
8

S
I

613




a2 "]

(2) Let E = (0,e) . If /A= /B, then it is easy
to show that /EBC ¥ /EAD , EB # EA , /BEC ¥ /AED,

P

hence that AEBC ¥ AEAD and BC = AD .
Given a trapezoid, label it ABCD and set up an
xy-coordinate system so that A = (-a,0) , B = (a,0) ,
C=(b,e) , D= (d,e) , with a >0, ¢ >0, b>d,
b - d # 2a (compare with solution to Problem 4).
We must prove two statements:

e}

(1) If AD = BC , then AC = BD .
(2) If AC = BD , then AD = BC

(1) If AD = BC , then d = -b (compare with solution
to Problem 4) and -

L = . L3 -
(AC)® = (~a - b)% + (0 - ¢)® = (a + b)% + 2,
URY-T \2 2 \2 2
(BD)" = (a - d)° + (0 -¢c)° = (a+ B)S + c°,

and AC = BD .

(2) If AC = BD , then

v

[]
—
il
I
s
S
i
4+
—
(o]
]
h
Mo

(-a - b)% = (0 - ¢)? =

(b +a)° = (-d +2)",

=-d+a or b+a=4d-a

=2
I
]

b= =d or b -d= -2a
But b -d# -2a , since b >d and a >0 .
Therefore b = -d

2 : 2 2

Then (BC)



JIY
D(2b,2c) - clad,2¢)

Let A(0,0) , B(2a,0) , c(2d,2c) , and D(2b,2c)
be vertices of a trapezoid, with a > 0 s ¢ x0,
and d >b . Then a + b #d (see solution to
Problem 4).

Let E be midpoint of AC

E
Let F be midpoint of BD . F = (a + b, ¢)

and |AB - DC| = |2a - (2ad - 2b)| = 2|a + b - d]

Therefore EF = =|AB - DC|

Problem Set 8-15
T T gk
1. Theorem 8-28 and Corollary 8-28-1. Find midpoints
of AB and BC , and draw perpendicular bisectors.
Thelr intersection is the desired point.

Theorem 8-29 and Corollary 8-29-1. Draw midray of
each angle, Thelir intersection is the desired point.

[+

3. (a) Draw perpendicular bisector of AB and midray
of 4}CB . Theidr intersection is the required
polint,

(b) Use the ruler to plot the midpoint (1,0) .

(¢) (o,4) .

s AR
IRV

i
()
Yh‘m




il
il
f—
=
1
o]
Y3
[
3
P
0
[und
[
L
]
=
I
nof -
—
—
(i8]
p—
1}
1
=
ke
1]
> Yo
ot

= - _ —
(b) . By Theorem 8-22, BE || AB , EF || B¢ , ¥ || iT .
(¢) DE, EF, DF
(d) The perpendicular bisectors of the sides of
AABC are the altitudes of ADEF . Since the
former are concurrent by the corollary to

Theorem 8- ES ‘the latter are concurrent.

5. Proof I. aince the perpendicular bhisectors of APQR

are concurrent (by corollary to Theorem 8-28), and
these are the altitudes of AABC , the latter are

concurrent.

_ 0 - b b b -0 b
Proof I1I. M ==——s=-==mn = — = - =,
~——= =" "gg ¢-0 c 'gg O0-a a

P
- -4 _c - 1 a
mhae m_ b’ mhﬁ T
' =9 © 15
Two non-vertical lines are perpendicular if and only
if the prgduct of their slopes 13 -1
(o, - %? is contained in h, , because
h, = ((x,y): x =a+ kb, y=%ke, k 1is real] and
] . ‘
; .a v ac
k= - 5 yilelds (o0, - %=)
(o, - %% 1s contained in h_ , because
h, = {((#,y): x =c +bp, y=ap, p 1s real] and
€ i qa. ] ac
p=-¢ vylelds (0, - =) .
Thus h h  intersect in (0, - 2%) Also h
L a’' ¢ - N ? b - T b
contains (0, - 22) , because h, 1s the y-axis and
contains all points whose x=coordlnate 18 0 . So
h. , h. , h, are concurrent.
a a b
f; ey
616
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and p = - g

o
o

Note:. In Proof II we chose k = -

"happy choices" which showed that hy and

These were
But

h had a point of 1ntersection in the y-axis.

c
v these "happy cholcea were not accidental They

reqeired some ingenuity:

, In Proof I, which did not use coordinates,
there was 1ngenuity displayed in consldering APQR .

quenuity carr be exercised no matter which type
of proof is used.
- (2b,2¢) and C = ¢24,0)

6. In AABC , A = (0,0)
(a)” Plan: Find the point of

j‘ ~intersection of two of
,ﬁthe perpendicular
. 7 . h\y sectors and then « B(2b,2¢)
, o Fegt to see if that
ﬁaint is contained
, D(b,c) E(a+b,c)
in the third perpen- ]
y ‘dicular bisector,
| TABD  Feol  c@ep
Sa
. (1) mfﬁ = %% = % , mﬁ? =0,
]
m—féﬁ’gfgaiﬁfai .
EC = = Ld

et bp, qQ, P—_be the perpendicular
blsectors of ﬁg B and iC respectively.

(2) p=((x¥): ¥y -c=-2x - b))
r= {(x,y): x = a} . “ i
By substitution y - ¢ = - g,a-:ﬁb)
2 2
y = b +_§ - ab
X =a .
. Therefore, (a, b2 ffig Emép) is the point
’ of intersection of p and r . cCall it

0




. . i} . - 7‘77 B b _ s
L e - (3) a={(xy): y-c= -4;Ew§ ( (a+bD
a " 'The point O 1s also contained in q
since by substitution

2 2 ) - .
(> +c” -8b) oo . (2 B)(a - a-b)
c T ¢ . /
b° + ¢° - ab _ b% - ab + ¢
_— © , G = ~— .
¥ R
. ) - B - c B ’
v | £ " S8ince p, q, r each contain the
B . 2{ 2 - B . . » ‘
’ , . point 0 = (a, b '+ g,A:T§Q) o

the lines.are concurrent.

3 : (b) Use distance formula ta show that
) OA = OB = OC...

- 2 -2

_ 2 b€ + ¢S~ aby2

(g_ - 0)° + (a=___3ﬁ)
2 . 2 .

; S ! 2. 2

(0A)?

il
w—
i
Mt
yv]

|
]
w—
o
[

) ’ 7 g : 2 + (b? + EE
. ) i v [) ‘
] ’ ' , o 2. 2 ,

A - = I + c - ab EE)E

1]
E

-~
O
)

L

1]

——

W
]

(]
o

Movagut?
+

ﬂ
[

1]
——
o
i
P
(o2
Mt
M
+
1
w—
o
| M
]
]
1
m\
o
St
3]

"+ a“c” + Ebgcg+agb

(08)? = (q0)? = &

IEEE L) O -
: 618 . A




N .
Chanter 8

‘ " Review Problems : : : ,
. ?Y - loms . | ;%-

1]
L
L]

- p = {{x,y): x -
0< ¥y < 3)

" w‘ L

{({x,¥): x + ¥y =3,
" -3<x<0)

o
1]

= 3,

0<x<3, 0<Yy <3}
. ' "Ts«ﬁ-"

¥

g = ((x:Y)g X +Yy




.- 2. (a) Yes (g) Yes

(b) Yes (h) Yes .
(c) Yes (1) F‘

No
(a) No (3) Yes
(e) Yes (k) Yes
(£) No (1) No
\ ‘3. Since the diagonals of a rhombus arégergxendicula:
\\ _ and bisect each other '
: 4 d, .
) 2 = 2
(%)2 + (-2%) - = 8°
L (8)% + (15)2 = §°
289 =
17 =

1 Therefore P = 68 .
4, (3x)2 & (4x)2-= (40)2 (

(3:{)2 + (ltsvc)E = (5 . 8)° 3x

x=8.

[
o

i
(5]
L)

Therefore the sides of the rectangle are 24 and 32 .

’
5. (a) (-1,5) ! .. B/ .
(v) (1,-1) /!\ e 3
‘ (e) (1,2) /i
(d) the measure of/ LAB = [3 - (-1)]. = &

A

(e) N e

R

AC =¢/13 - (sl)t].}é# (5 - r(iéflia)i]g = yh* + 62

P |
BD ;i{;/[! 1 aé]ea- (5 ;(!l)]g :WE :éE B
Therefore AC = BD : 7
(£) W™= ((x,y)y = -1)
(8) AC™= ((x,¥): x = -1 + bk , "y = -1 + 6k ,
k 1is real) : .

(-1 + 4 b,
(15,23)

‘(h) Q
- Q




(1)’.Sispe"ar A 1is % F 8] ope of line perpen—
dicular to AC 1is %— Therefore the

required line 1is

((x,¥): x=3+3k, y=5-2k, k 1s real)

- _ J?i ’

6‘ (E.) : E AY
(b) w2 ,
/. -Ja (20,2b)

(e) Slope not defined. e 7 (3a,b)

' = : - 3 - _ 3 5
‘ool @o.o taao X

7. (a) Proof: Set up an
xy-coordinate systen
8o that A = ;0
/(Q ) T3-R(24,q)
B = (2a,0) , - L - -
C = (2a,2a) , o A;L(D‘m B(2a,0] h
D = (0,2a) . -
Then since R 1s midpoint of BG , R = (2a,a)
and since S 18 the midpoint of TC ,
S = (a,2a) . Then by the distance formula '

AR = 4/(23) + (a.) = {/ba E and

- BS = 1/a +(Ea.) 51/532;@1145 AR = BS .

AY
80 2al-_S(0,20).
D(0,20)k C(2a,20)

]

1
5 .

Since the product of these slapés =-1, B | AR.

. slope of T = &
a ; slope of ﬁ=§

(b) Slope of B3 =
(¢) The equation of “AR by point- ngpé form :L.a
= -§3§ . The equation of T by point-slope
form is y = -2(x - 2a)
The 1nterseetian of these two lines 1is the point
Ba )

%a - 2a ) 1/643 -’:,,

», AB = 2a . Therefore TD = AE .

i\

Then DT =

~-
o




s s

Proof': If we select a .
coordinate system which
assigns the coordinates
to the vertices of _ _
rapezoid ABCD as in- AfOQ)
Mecated in the dhgram
(with a >0, b >d,
¢ > 0) , then the mid-
points of the nonparallel _
sides KB and B will be F(d,c) and E(a + b, c)
FE 1s the median of ABCD . We are asked to prove
that the midpoint of D5 41s on FE . It is clear
that “FE is ((x,5): y=¢, x 1is real} . The
midpoint of DB 1s (d + a, ¢) . Then the midpoint
"of DB 1s in "FE . It must still bé shown to be in’
FE. Now d<d+aca+hb, since a, b are all
assumed positlve and since b > d . Then the point .
(d + a, c) 1ies between F and E and the midpoint
of TE isin TE .
Alternate Proof:
!‘EEE I(I;Y) _
“BB"= ((x,y): x = 2a + k(2d - 2a) ) y = k(2¢) ,
tr : k /is reall .

=

+

=¢, X% 1is real] =

o

]

- 1 The intersection T of these lines must have as its

y-coordinate ¢ = 2¢ck , whence k ;% , and
. . = 1 -
T = Céa + %(Ed - 2a) , é(?c)) = (a +d, ¢)r, which

1s the midpoint of BD .

9. (a) y=0 |

s (b)) x=0 :
¢ (¢) If y =10, then for all values of x , xy = O .
' If x =0, then for all values of y , Xy =
Therefore each point of both axes satisfies

1
o

xy =0 .




10., Our coordinate system
assigns (0,0). to A §Y 3
and (6,0) to B. D '

" Since m /DAB 1is given_
as 60 , and m /CBX = m /DAB
(corrésponding angles of two
parallel lines cutting a
transversal), m /CBX = 60 ,
¥

1608 C(9,00 "X

Consider CG' 1 AX". ‘Then .

in ABCC! ,méE:C"EBD; BC =6, and BEC' = 3
\\ (in a 30-60 right triangle, the shortest side is
. half of the hypotenuse), and using the Pythagorean
“~Theorem we find

CC! = /3 =3¢3.

(a) Thus cC (s,sﬁ)
(b) D= (3, 343
(c) AC—1/81+27 = 643
(d) BD = 1/3 +27 = 6 . Thus AC =43 ED .

(e) AC= ((x,¥): x =3k, y = k¢/T and k}D]
11. (a) {(x,¥): x=1 and y 1is reall )

%L
&

(b) $((x;y)= ly] = 3. and x 18 real)

X, or y==x; x and y are real)

(¢) ((x¥): ¥
(d) ((x,¥): y =3 and x 1s real)
. (e) {(x,f): x =12 and y 1is real) ¢
C(f) ((=x,y): ¥ = -8 and x 1s real)
12. A = (3,4) , B = (;1,5)i, ¢ = (-2,1)

g
[}
It

Thus ABC 1B an isosceles triangle, since AB = RC ,
and ABC }ﬁﬁa right triangle, since :

(Ac)? = (Bc)? + (_;;B)E’

. 623
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13. .

14,

16,

Midpoint of 7B

(ﬁl"xg) - ) o
Blope of 1B = g = % » slope_of line perpendieula;

"to ABE = -2 . Therefore the line is

((x,¥): x==-8 +k,y=2-2k, k iére;al] .

o e T 6 3P e

A =4lc -3)% 4 (6-52a=4lc -3)°+1.
Then AB = AC gjgves (¢ - 1)E + 25

® -2 +1+25=0c2-6c+9+1

1]
—
e
'\
[
~—
+
=

i

diatance from the y- axis is |nl . ore
3 =2|n| , lh[;%,thatis,/ha-g or h=-3%.

Select a coordinate system

which assigns coordinates Re

to the vertices of i

parallelogram ABCD -+ X\

as "indicated in the D{b,c) ____ C(b+2a,c)

diagram. Then M is

the midpoint of AB and ,
has coordinates (a,0) _ :
We are to show that one ~ Al M@0  B(Ze0l ™ X
f the trisection polnts

D = [(J‘;Y)

b+ k(a-b), y=c¢ - ke,

kgl}
~(D + 28 &\ __
The trisection points of AT are R(—g=, %) and

Now, if R 13 on 'MD then there

‘15 k Buch that D_g k<1l and c - ke = %ﬁi

Clearly k= 2 satiafles this requirement. Using
K3 _

= § we see that R 18 a member of set WD ,

[}

o
]
=

e

c2ed



R
Alternate solution:
- ((x,¥): x = k(b +§23) ; y=ck, k 1s real)
v M= {(%;y'h x
Intersection of ?ﬁﬁfﬁ_ﬁﬁ?hﬂs y-coordinate such that ,
ek =ch, or k=h.

W

a +h(b - a) L, ¥ = Gh » h 1is I‘EEl] .

. %
Then its x-coordinate 18 such that ;
k(b + 2a) = a + h(b -a)=a+k(b-a), or
kb H,2ak = a + kb - ka , or
2ak = a - ak-, or

l,'
k= hi.

Therefore, R , the intersection point, has coordinates

o

Ly 52y G5 2a + b “e; -
(g(b+ga)!§)g(gﬂ,.§g—=,§)§
; ' | - | _ | |

which are the cpordinates of a trisection point of

¢ . ‘
17. Assume a coordinate system

whlch assigns the coordinates &

as indicated to B, ¢, A .

" Then, referring to the
dlagram, we lnow that

E= (2b + a,2¢) , v

A(3b,3c)

[
il
Lo

= (b,c) , and we are t

show gE% aﬁdgg—=-§

An equation of “EE 1is

- 2

An equation of DC is




Solving férﬂthe caardiﬁates of F , we find
2¢ I - o % o )
HFEr < pogek - %e)

from which

30

Then LE -

and DF

[ O
m\
L]
~4w
o '
o
+
w |
]
ey T
!

. 626
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Chapter 9 T
ANSWERS AND SOLUTIONS

Problem Set 9 2

No. The definitlon requires that the line be perpen-

dicular to every line containing Q and 1y1ng in E
/AER , ZABK /TBA . By definition, AB | E implies
b IS e
AB | “RE, I E’J_ AB _l_'ﬁ' and-by definition of
pér‘—pendicular 11:1&5, the angles are righ? angles, '
(a) Yes. A plane i1s determined by three noncollinear
points. If R,\S, T were collinear, then T
would be in ZZ )by Postulate 8.
(b) /PST , /PSR . Definition of perpendicularity:
a line and a plane, and two lines,
(a) Three. Plane determined by AB and TB ,
plane determined by AB and BH , and the
plane of square FRHB .
(b) FB | plane ABH . Since KB | FB by hypothesis
and FB | B from definition of a square,
FB | plane ABH by Theorem 9-2.
(a) Three. Planes RHB , RAF ,.and ABF .
(b) BH | plane ARF . BH | RH by hypothesis,
BH | AF at point H by Theorem 5-8,
Therefore BH | plane ARF by Theorem 9-2.
Yes. By Theorem 9-1
'(a) Yes. By the definition of perpendicularity for

a 1fne .and a plane.

(b) Yes. By the definition of perpendicularity for
a iine_ and a plane. -

(¢) No. By hypothesis, “BC lies in plane J
and therefore cannot be per‘pendicular ‘to 'ﬁép
‘By Theorem 9-1, all lines perpendicular to AE
at B must lle in the plane perpendicular to
“NE"” at B (that is, plane & ).

By hypothesis, FB | plane 2 . TB | &Bgand

FB | RE by definition of perpendicularity of line

o e
and plane, AABF = ARBF by S.A.S. FA = FR by
definition of congrjjmgce for triangles. /FAR = /FRA
by base angles of an celes triangle.

627 . 753&;




Statements o Reasons

58 & E
|
2B g E

. Property of a cube.
. Property of a cube,
Hypothesis,
Addition property for
equality. :
[WFL | 5. Property of a cube.

AWFL . 6. S.A.S.
L . 7. Definition of congruence
for triangles.
8. KW | WK, 8. Property of a cube,

© KW | WF . ., '
9. KW | plane ‘fﬁ. 4 9. Theorem 9-2.
10. KW | WR, 10. Definition of perpen-

W | VT . - dicularity for a line and

W R

K le

6. AWAR

£
=

.a plane.

11. KW = KW . 11. Reflexive property of

‘ equality.

12. AKWR = AKWL . [12. S.A.S.

klé. KR = KL . 13. Definition of congruence

H

ntersects Z at CE .,

Reasons

1. Theorem 9-6.

2. Corollary 6-4-1,

3. Theorem 5-6.

4, Transitive property for
~ eongruence of angles.
5. BD = BA . 5. Theorem 5-7.

628
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sg
L™

Al1;:e:mai,:;we1;;‘Ai after Step 2 above: aAED"m A:'ACE .
by Theorem 7-6. Hence - AC , CE are prep-orticnal ;
tq AB , BD . Therefore AB = BD s 8ince AC = GE .

3. Proof: Let £, wnd £, ve two parallel lines. :
) Let Fg be a plane whic:h is parallel to one of. the
lines, say aﬁ . We wish to show that ,;§ is parallel
to _452 . Suppase ?5? wWere -not parallel to .,!2 « Then
ﬁ? would intersect ,,(! in a single point. ‘Thus
ﬂgl » which by hypatheais does not have exactly one G
point in-common with ?§ is distinct ffam sg
We now apply Theorem 9-4 ta find that ,?§ intersécts
351 in a point. On the basis of this e%ntradicticn
: to the hypothesis, we must reject the passibility
\ " that 7 and ,(; are not parallel. Hencé ;s 1s’
parallel to .,42 )

Erablem Sét 9-4

1. Polnts W, X, Y, Z are equidistaﬂt from the .
endpoints of ' AB by hypothesis. By Theorem 9-18
they all belong to the perpendicular bisecting
plane of KB and are therefore coplanar.

2. Statemenjbg a |  Reasons
1." 7] B8, 1. Hypothesis.
72l] RB
2. 2. | 2. Theorem.9-9.
3. ”7,1| TDh . \3. Hypothesis.
L 4, 2] Tb ‘ \ Theorem 9-10.
) 3. St‘ateménts - > Reasons - )
Lements - el s _ .
1 AB = CD . 1. Theorem 9-17.
2. AB| Bp, 2. Definition of line perpen-
¢h | T8 . dicular to plane, :
3. AABD = ACDB . | 3. 8.A.S. '
4, AD = CB . 4., Definition of congruence
’ for triangles.
626 ' ;
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¥

(a) BW. B . BR. 90 . /BKF .
(b) Not necessarily. W, K, R could be any points

in ¢‘5- *

(a) Yes. . (f) No.

() No. (g) Not necessarily.

(¢) Yes. Yes. Yes. , (h) Yes. -
(d) Yes. 0 (4) Yes. * .
(e) No. (1) Yes. )

(a) 6 inches. (d) 3472 4inches or ~ 4.242 inches.
(b) 0 1inches. (e) 343 inches or ~ 5.196 inches.
(¢) 3 1inches. :

%" Ax and “BY" are perpendicular to plane 2 . Hence

Ax and ? are parallel] lines and therefore
coplanar. Since O 18 in” BB and N 1s in ",
the plane AB:FI contains both O and N . Since
each of the coplanar lines W"’T’ and “BY" 1s

perpendicular to gﬁé, they are parallel to one

another. Since AQ = 0B , we apply Theorem 7-2 to
obtain XN = NY . Thus N is the midpoint of XY

ﬁ

Let “BE" be the ?er'péndicuia'r to plané 22 at B.
Then AB l BE , and it is given that 7B | BC .
Hence “AB | pla.ne EBC . By the definition of
projection, ~CD J_ 7. "I'hen “eD" | |*BE™, so that D
is in the plane EBC . Then DB 1s in this plane.
Hence I? L BD, or /ABD 1is a right angle.
Let the given point be P and the given plane be
& . Let F be the projection of ‘P into &
If‘ X 1s any point in & distipct from F , then
“FX" 1s a line in & . Since WAF" is perpendicular
to c?; 2 it 1s perpendicular to every line in .;E
through F ; in particular, AF EL FX . By Theorem
6-19, AF 1s shorter than AX . Thus AF 1s the
shortest segment joining A and a point in 5—




. N %'E{‘ -:-. v
o | |
Prablem Set 9-5 . -

(a) 12 in the usual elassracm.
(v) Right. g‘,
(e) (1) a diheé%‘i angle 1§ acute 1f and only if
1ts meadure is less than 90 . '
(2) a dihédral angle is obtuse if and only if .
- 1ts measure 41s greater than- 90 . . s
(d) Two dihedral angles are adjdcent if and iny ifr
‘ they.have respective plane an%les which are
- adjacent. _ :
(e) Two dihedral angles are supplementary if and
only if the sum of their measures is 180 .
(f) . Two dihedral anglés™are complementary if and
only if the sum of their measures is 90 .

[
.

2. m /C-PA-B =-90 (m /CPB= 90) . ' .
m LCAB = 60 s Bince ACAB 1s equilateral.
(AAPC £ ABPC = AAPB .) oy

3. In Efflet BC be perpendicular ta'VPQ; Then by
the definition of a plane angle, /ABC 18 a plane
‘angle of /A-PQ-C . _# | £ by hypothesis. Hence
‘ /A-PQ-C 18 a right dihedral angle, and its plane
)
angle, /ABC , is a right angle, and ‘AB 1BC .
Since it 1is given that AB J_"FQ' we now have - B>
perpendicular to two-lines in & through B ; hence,’
- by Theorem 9-2, ~AB 1l E.
4,  Using the figure in the texﬁ, consider XN - and “¥N
in @ such that “XN [ NG’ and W |NE . T, 2 -
and "YN | # by Theorem 9-21. Then, by defiﬁitian ’

of a line perpendicular ta—a plane, XN [ and
O "IN [“MN". By Theorem 9-2, ~MN' & .

L 6311(H




and

gongruentg

ﬁ L]

.{Eé

(a)
T (p)
(e)
(d)

e),

(a)
‘ (b)

; ~ (e)
. (d)
(e)
(a)
(b)
(d)

s (£)
’ (g)
(1)

*-BH

Revliew Prabﬁems‘

;e

A

, E"l‘hearemggvfe +now - 5”3

. ' “'we know AD II'!E_-' and “*CA II']'_P
’ ‘ AC. , we know we have two parallelograms
B is perpendieular to
the plane "

‘These are rectangles sihce
both pjlanes and therefcgé to lines
through A and B .
angles of the -dihedral angle
Then AACD

/

/CAD

£

in
and /HBK
/D-AB-H

S ABHK by S.A.S.
' We do not know the measure of any of the angles of
~* " the two triangles and so cannot find the length of:

£

LS

Chapter 9 Sections 1 t

o

always{
sometimes
sometimes
always
gometimes

Ly IS < L I s

(£)
(g)
(h)
(1)
(1)

(£)
(g)
(h)
(1)
(1)

R R

sometimes
never
always
sometimes
always
(k)
(1)
(m)
(n)

o

e |

coincide (and parallel)

parallel
parallel

coincide kand parallel)

parallel
coincide

(and parallel)

(ﬂ

#

By Theorem 9-6
Since

»~BK'= AD

are plané
and are
However,

The proof is an immediate application of Theorem 9-20.

i,



Problem Set 9-6

S
‘ . ¢ N.
s . - 3
s - .lr T L] )
i, , 1
XL . jr i
,ﬁ,l l'l'ilull..uf ,w.ﬂn\ o -
o - ,fé .?s L]
| ..f,..,.. -\ |
| j " | ~
Co Sy
, e i A o
“ , < N od AN -
A /s.. " #ﬁ /f —
" L {-2
) _J..J. W ] ____m.,@H
AN ’ , ...;..,.. od ]
NE 2 A A oy = ./ h P I i
I m L s " e | o f— e —— Iv
| A 1 A Y
. /,g * ”; — A b ;.\Jl!
- | A , N “
N _#. ™. — A% N
NS S LN
\ k- A% I . A
“ =l N N
N - | * N | .z.,ﬁ
— Nt NN o_______ N«
, N ~ , n iR
N | NN T
~ | ,3 ' ;_f.x | ¥ by
. )’ UDRIRIIUR. ! AU T = [~
* , =2 ——————-4> .
= |
T i
,_ ) x
e *
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0.

In the plane parallel
to the yzZ-plane ‘and
two units in front

of 1it.

o

'
_ e
&
¢ R */

634
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. {e) 1In’the plane parallel f\ T
. " to the yz-plane and _ o
thfee,ﬁhitg.beﬂipd 1. . -

.,

R I I A o

4, (a) 'xg!plane is y=0.

fb) y =2 (Parallel to
xz-plane.)

li

%

XZ plane is y=0

y=2(porollel -
fo xz plans)

(¢) z = 0. (xy-plane)

*(4) = -4 (parallel to

2
xy-plane. ) - 7 EZ‘D(“ plane)

. R - /ﬁ = - =
. = — . P — _ —% Y

(0,00

$(00,-4),

i z=-a(parallel to xy
plane)




5. The 1acus (the set) 15- - e

(a)"the-x -axis - -
(b) the z-axis -
: (¢) the y-axis
. S e (&) the origin . |- .
(e) A line in the yz-plane which is parallel to -
' the z-axis and intersects ‘the y-axis at (0,2, D)
() A line parallél to the z-axis and- intérsegtingf

- 6. (a) The ight vertices miéht have ‘coordinates
T (0,0,0) 5 (0,8,0)"; (a,8,0) ; (2,0,0)
- (o, a) H (.Q;a:a)_i (—a;asa)'; (a,@;a)
(b) The:eight vérticgs might have,gécrdiﬁates
(0,0,0) ; (0,b,0) ; (a,b,0) ; (a,0,0) ;
(O;O;E) 3 (D;bsg) H (a,b,—i_‘-) §\(a;AO;‘3)
7. All the points in space A
' for which x + y = 2 o I
1lie in a plane which ) . ﬁ - ﬁxygtx+y:2}
1s parallel to the ‘ . K ) i;ﬂ o
7 z-axis. and’ which inter- - fﬁ
¥ ; sects the xy- p;aﬂe in . =N |
= the line x +y =2 , | : ' B
. : SS i ¢ =
—L — ‘i:j——%Y
5 o= ] i A
I 7 (0,2,0)
I 3
I .
\ I _ At2,00)
) -
[
X
Problem Set 9-7
© 1. (a) 13 . (a) J/IT
T (v) 7 .(e) 3
(¢) 5 (£) vIF
636
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X =

P (12,3,4) ;
PE(;lEJBQ&) N

e
]

(1, ¥/I%,1) and (1, -.,/T 1)

(aB)°®

(5c)2,

(ac)?

(aB)?

right

AB

AC

AB =

+

l+4+9=
164+ 4 + 4 =
9416 +9 =34

(8c)% = (ac)? .

triangle.

V62 + 12 4 22 - /55

AC

Therefore,

Ey@?

,/‘:32+22442 Y56 = 2 yTF

AABC. is'a

’ and hence, AABC 1s 1lsosceles by

definition cf isosceles triangle.

637
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E‘ET
NS

__ % ' .
DF = /36 + 16 + 64 =,/116 -
- BC = ACwe ADEF 1s isosceles, but not
equilateral.

=3
Lp]
I,
+

fH ;
-
[}

=

Therefore A ABC is
' C equilateral.

8. (a)

I

AB = CD. BC = AD .

.(b) No, because it does nét assure us that points

%

A, B, C, D, are coplanar.

-

o Co
Hence the @gﬁite sides of the figure are
congruent.

9
1

(b) AC =4/ FH %

,15 7& 3

JIF, A Vs B
(AD)" + (DC) =9 + 5
= 14 = (ac)? . - C3 3
Hence /D 1s a right

angle? Similarly, o 75

éA : éB sé‘: - anre

right angles.

o]

(¢c) No. It has not been proved that the four
vertices are coplanar.




- 10, éiven two pcin{is, A and® B , choose f",.L_\:Ei ‘as the -’
y-axis and the midpoint of AB . as the origin.

There is a real number a , a # O , such that
A= (0 ——_a,o) and B = (0,a,0) . Then the!xzaplane
is the per‘pen\a;cular bisector of AB . We have two
. things to prove: ’
r . F 3 E
, (1) If P 4is in the xz-plane, then AP = BF .
(2) 1f AP = BP " P is in the xz-plane.

(1) If P is in the xz-plane, then P = (b,0, ;)
" for real numbers b aﬁd c .

AP =‘¢?b - D) + (O + a) %7(c - éjéﬁ
o ’ V% +\ag + éﬁ

BP 1/(1:;:) +(O-a) i (c - 0)2
% ==yé +a° + cE s

and AP = E

e

hn‘

(2) 1Ir P(x,y,2) 1s any point such that AP = BP ,
- then it follows from the distance formula that

a yﬁ;fi G) + (y + a) + (2 - D)

—‘./(xea)g« -a) s (z-0)2,

. xE + y* + 2ay + ag + gg = E , yg - 2ay + ag + 22‘
bay = 0 , and Singei a#o, =
y.=0. '
Therefcre P 18 in the xz-plane.
/., bq .
63‘9 {
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Problem Set 9 8

- 1. 'The coardiﬁates of the endpointa of tnéﬁd%agohals
EF and GH are .

' - . (2a,0,2a) . ' g*

]

(0,2a,0)
(2a,0,0)"

L]
Hm (>R B o
1

(D—Earza)rf" ) LN
+ (0~ 2a)c + (0 ’

|
[
S,
I
[
|
[
[\»]
-]
e
o}

I
O
:}I‘ .
&m
| Ll

o
M
L]
+
-
o
1
I
w
Mt
M
+
-
nd
fur
!
O
S
N

] Aﬁherefare, GH = EF = AB .
2« “(a) AB gl [(x,y,z) X = -2+ 10k ; y = 2k , z = b
k 1s a real number]
. (b) BB = {(x,y,2): x= -2 + 10k , y = 2k , z'=.}

ng{;l}

((x,y,2): xS+ 10k, y=2k, z =14
' : k > 0] ‘

—
AB =

3. (a) Midpoint of AB 1is f

]
ko
[}
1]
=
'
Lo
ey

2 4+ 10k , ¥ = ¢
}

C{(x5y,2): x =
,—{fi )

-k = (B;lxl)

o

(b) Trisection point of BB nearer is

((%,7,2): x = -2 + 10k , ¥y = Ek\ = b - 6k
— 2

E]E(‘j:?ﬁg)

(¢) Trisection point of AB rfarer B is

[

k

L

{(x,y,2): 'x = -2 + 1Dk s y =2k, z =4 - 6k

P LT T

Blo
‘:‘X

<y




(28,6,-14) %

k=3, P=
, (e) When k=-3, P= (ESE,,EEV,EE)' .
(fa z =0=14 551{ ] - .
F 2 .5 N
. : - 23— -
14 4 '
\P = (—1? s % . Q) PR
.‘ - y=0=2k '
' - Yk =0
® « P = (‘2;0;4) . > ]
XxX=0= -2 + 10k
of 1

. (g) z=3=14 - 6k
k=%
1° 1
l‘ PE(*%:%‘:B)
"y = -2 = 2k
‘ k = -1
y P o= (-12,-2,10)
* x = -3 = -2% 10K

}
& ! >
/ b
!Q
641 £ H




4+ C- : ’ o T

4, If a réetansul_ar solid 1s e _
glven, there isra coordinate Fl002¢) E'p‘ab.zc)" .
system which assigns T - A - .7 .
coordinates to the vertices @3&

_as in the diagram. {(200,20) § A N

- L‘ ) » 7 | N "\ A ) —
= Ye must Eho‘;\ﬁﬁat all the (opp LN
/ 7 dlagonals AH , BE , CF W el ..

BG have the sam@length@ﬁ — c(zn.z'h‘m. -
* 429,000 .

il 7 -and the: same midpoint. -
-

‘ . \ . Using the distance formula
four times, we find that’ -
epch diagonal 'has length

2 T R I

, .Mldpoint.of CF -is - . _
. : ; i

* + 23 + 2b -2¢ + . ; 3
(D,,"‘,f*?‘ D ,f’,r ,E" — LG) = (a!b c)

Simirarly,—

»*
L"

midpoint of BE 1is (&,b,c) ;
GD

;;;El;pasint of

midpoifft of AH 1is (a,b) . .
R Thus the point (a,b;cﬁzﬁs the midpoint of each -
diagonal, and théféf‘gf}'é \Ehe dilagonals bisect eath
7 other at - (a,b,c) . .
i - ¥ ]




) 5. A, B,C are collinear if the sum of the lengths of
two af the segments Joining the points equals the

lEFEth of the other ségment . 7 E e

S a(-1,5,3) 5 UB(L,4,4) ; c(5,2,6) . -
- 'AB—*1/22+I§7LE 6 ; . ]
o= g M2 2% 4 2% g - 24/_

AGE/& +3+
;. AC

An altefﬂative méthod: .

w
]
, N
w‘r
=g
L#%]
Jl

AB + BC , and hénge A; E; c %ié collinear.

= [(xsy,z)s x=-1+2k,y=5-k,z=23+%k,

=

) k 1is a real number} .
. : ) R R
N ﬂfe pixint C 1s the point on “AB  corresponding to
/:_ 6. “‘_'13'13“2 %{(x;y,zz;;x =2+k,y=1-3k,z=3-2k,
' - iff ' k 1is _a real Aumber] T~ '

"If Tx =0, k= -2, f

- ) . P~ -
JPherefore, y =1+ 6-=17 -and z2=3+4=7,.
) B=(0,7,7) . ,
’ g T ,
7. PPy =S {(x,¥,2): x = -T + bk, y=2- bk, z=-1+3K
&7 - o
- . k 1is™a real number} .’ -
- S l i * -
,)If y=07 k=535, r
: 2 .
,, . i ‘:*"" =

" Therefore, x = -1+ 2 =1 " ‘

T -

« =T 2 E‘ji
. 1 . -
(;(J O: ?) = - e
r / :
i =
N, . i
: . i
T - 1
LI
TERALD
. R 5




., -8. Let the coordinates of
<. thé vertices of the’ oo
3’ rectangular solid be . -

" A(2a,0,%2¢) 3. | o . DX00.2¢) _ (0,2b,2c)

B(2a,2b,2¢) ;

5

| .

. -« c(0,2b,2¢) ; ' 20.0.2¢) AL\ -
- - A R e R N LT 24a. ).
_ » <+ D(0,0,2¢) ; S ; 2 -
.o '+ E(2a,0,0) 5 " Hie ot Ly
;' F(EE;EB,O) H - v : EE(QQG)\\ i ‘I! ‘iG(Q‘Eb‘G) '

=G(D,Eb§,0) H E d - =
H(0,0,0) v x./ (20,0,0) F(20,2b,0)

~

M , the midpoint of
] ‘all diagonals, would 7 7
) ~have coordinates (a,b,c) . ° ”

H =

!!Usingﬁdifferent dlrs of diagonals and the Pythagorean
!Theofem, the fol owing rélatianshipsiaméng a, b, ¢,
may be established.

In right triangle DMC , (DM)2 + (QIG)2 =4(DC)° . .
K ‘ x v e '
_ Hence, (a - C))E + (b *%‘0)2 + (¢ - 2e
et . S . 2 2
S ; + (b - 2b)? +‘(c§23)E:(2b) s

or 2a  + 2b7 + 2¢” = 4p° ,

© Similarly, from AGMF , b° +

o]
it
Y

and from ADMH ,

[
o 4=

ol

'LU‘

st 3]

9. (a). m(3,

(0) B2

=
Lol

X

y = -1

”F
lo
I
i
P

z + 0 - _ £
5 3, z =206

. 'Hence, the coordinates of D are (6,-1,6) .

(c) Yes. vVertices A, B, C, D 1ie in the plane
determined by the intersecting lines *Ac™ and iﬁff
and hence ABCD 1s a quadrilateral. If the
diagonals of a quadrilateral bisect edch other
the quadrilateral is a parallelogram.

6y
200




: -
E [4
§ L

10. M, midfointjof AC , is (£, 1, 49 ;

V. > * S
v M, midpainti@gh BD , :is e(%‘, 1, 4) o e
. ' : ;o i : o
v ) Thergfore, M = M‘ and ABCD is a plane IlgUPE, 'Z
“ ) determined by the two intersedting diagonals B
) Hence, ABCD 1&.a parallelogram, since the “opposite’
— ~ . ’TJ . '%,v
e T : ) s8ldes are 3cngﬁuent (or by t?; diagonals . bisecting ;gaf
. eaclr other). : : _ - .
SM11. M, midpoint of -AC , 1is (% , 2, - Ly ;e p
M', midpbint of BD , is (2, 2, - &) .
= . ) = &
. Hence, M = M'., and “ABCD 1s a plane figure,
; deteryined by the two intersecting diagonals AC and
t BD . ‘ABCD 1is a rectangle since it 1s a quadrilateral
with all right angles.
] - . 1.
Problem Set 9-9
1. (a) Using ax + by + cz = d ,
' l(‘l,O;O); a+0+0=d;
P,(0,1,0): O+ b +0 =4 ;
/ . 3(D,D,l): 0+ 0+c=4d .
Theréfore dx + dy + dz = d
&
or X+ y+ zZz=1 ?
N . ‘c=d:232+%-q. .. _d
(b) P,(3,0,1): 3a +c ="d ; 3a te=dia=g;
P;(0,1,0): b =d ; 4
PB(Q,O,E)i 2c =d;c=3
d d, _
Therefore rali dy .+ 52 = d
or X+ 6y £3z =6
. % %
' 645
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Aruitoxt provided by Eic:
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3.

(3,0,1): 3a

B

PE&;;E{O)z a + 2b -

P4(0,2,4): 2b

Solving, ¢

Therefore 8x +

Pl(l,—l,o)a ‘a

P,(2,0,3): 2a

"3

Selving, b =
¢ =

i
il

Therefore 7x -

P.(0,-3,1): -3

+
o]
L

jo

(i1
2,

[

i

+'3c = d ;

b

Hence,

(a)

5% + 4y = 20

2x + 6y + 2z = 31

1s a plane perpen-

dicular to the
Xy-plane and

intersecting the
Xy-plane 1in line

5x + by = 20

ghis plane intersects

the yz-plane in the 1line

whose equation in the

yz-plane is y = 5
6Ub-




& =
(3

(Using xyz-coordinates, the line is, af course,

((x;y,2): y =5 and 'x = 0}

(b) x + 2y + z

5 1s an equation®of a plane.

The intersection of this plane and the xy-plane

15 the line whose egquatien in the xy-plane 1s
X+ 2y =5, e — )
(or ({(xy¥y,2): x + 2y =5 and z = 0}) .

. The intérsegtiaﬁ of thils plane and the ;F-plane
15 the line whose equati@n'in the xz-plane. is

X+ z =05, , .

(or {(x,y,2): X+ z= 5 and y = 0}) .

The intersection of this plane and the yz-plane
1s the line*’whose equation in the yz-plane is

(or {(x,y,2): 2y + z = &° ggg x = 0}) .

et

(inéfY

- B (5,0,0)

. x -2y + 2z =9
5. (a) y+z=-1
(b) vy +2z=-1.
(¢) 3x + 5y + 14z =7
.6, 3(2 - 3k) % 5(1 4+ k) + 14(4 - 2k) = 11
The point of intersection is (- %% , %% s %)
= : N " . s )




3 * . =

H — = =" 4
1 / ,Z _#D(-2,0,4)
== —— == 4§ P 4
e A |
s s'; A |
’ e RO g i
N 7 . N C 2 Lt f
(272, 9AF ——~=——" 7| ! L 7
[ LS st 23,7
| Is" o ’ (!B}s‘ 4]
e A
! i
! I 2 I A3
! | : ¥ % :
! I i
: r | ZEJII’ !
I : i
| | I, :
-t e L | -
s % 4 e 713 a Y
I & I . 1 . E o - L
I s P l 7
(i [ | |7 !
I E | 1
ER I ] )
| . ! 1
4 ! }3 } B
| i i |
| L ,_
X i :4=————l&====§?l 5
| | s
- II * i 7
| /
| |,/ )
2. (a) 7 bomr m e (2,3,-4)
(b) 5 :
4 4 13 ’ v
3 (a) (;EQSQT) il ;
.3 .
(D) (lg?é':f) -
b, (a) ((x,y,2): x = -6k , y = 4 =2k ,*z = 5 + 3k ,
kK 1s real)} .
n - ‘H‘:' B
(P) ((x,y,2): x=3 -4k, y=3k, z=7,
"’ k 1s real} ™
5! (lE;'ET‘!’l) = i e
648
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ERIC

Aruitoxt provided by Eic:

6.

—]

b f—
= [

[
(kg

14,

‘(a) Right.

(b) Equilateral. .

(c) 1Isosceles right.

(a) Coilinear.

(b) -Collinear.

(¢) Noncollinear.

(d) . Collinear. ~

Not necessarily. All four vertices must be
coplanar if ABCD 1is a parallelogram.

. The fact that the diagonals blzect each other
ures us that the vertices are coplanar.

]

o]

e

w

]

=
== g=

5y .

Yes (because 3 - 1 + 2

The line {(x,y,0): 2x - 3y = 6}

LSRR

Plane perpendicular to the y-axis at (0,%,0) .

bx + 6y - Uz = -9

Let M be the origin and A'B'C'D' be the xy-plane
of a three-dimenszional coordinate system, assigning
coordlnates as follows:

A'(D;"a:D) 2 D‘(D;aso) 3 B'(b,—;?,;O) ;c',(bsa‘;a)
A(0,-a,c) , D(0,a,c) , B(b,-a,c) , C(b,a,c) .

Then ,MB sevgg +'(—sa§g + c?

I

_ A2 . 2
MC =4b" + a"+ ¢

MC .

[

and MB

"
*
““»# Ny
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¥ REVIEW PROBLEMS
Chapter 6-9
1. © 20 +
2 + 2 +
3.+ 28, +
4, o 29, 0
5. + 30. + s
= o 0 -31 0
7 0 32 0
s
8. + 33. +
9. +- 34, 4+
10 0 35. +
11, + 36 0
12 0 37 +
13. + 38, +
14 + “ 39 0
15 -+ 40. +
lo, + 41 0
17 0 42 +
- 18, + 43, 4+
19. - 0 Ly +
20. 0 bs. 0
21. + - ho. o
22 o b7, +
23. + 48, 4+
24.. 0 - 49, 0
25. 0 i 50. 0
| |
ST 650
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Chapter 10
£
! i ANSWERS AND SDLUTiONa .
Problem gat 10-2a -
1. (KB) , (BA) .
C ;== —= ) . —_— —
E- (Ag.—) L] (A:B) il (B!CT):! (CEA)S (EJA) ¥ (C!B)
3. Flgure a:’ (Kfﬁ) (q H) ; (F,E) = (J,1)
Flgure b: (C,D) = (K, F)
Figure c: (A,C) = (D\F) . ) )

" 4. (a) By the Betweenness-Addition Theorem AC = BD
hi an@ therefore AC ='BD . Also by the
: collinearity of the pointg in the brder given
it follows that AC 1s a subset of BD or ’
fﬁkzis a subset of ‘AG", hence ACT || BB" and
(A,C) = (BD) . .
(b) Same proof as (a). . : )
4 (¢) (K,B) = (C,D) tells us that AB || GO and
AB =CDh . It fallcwa that B and D are on
. ¢ the same side of BC and hence ABDC 1s a
» J o parallelogram. Hence (A,G)\=—{tB.D)
J () 1f A, B, C are,collinear and D 1is not in
v “AB", then “AB" intersects “CD" and this would
e contradict the hypothesis titat iB%|| et~
' () If C, D are between A, B, then AB £ CD ,
n S “which contradicts the hypatﬁesis that
A (K;B) = (T,D) . .

5. For each case let the projections of BJFF, G, H
into Af be B!', F', G', H' , and consider lines
parallel taasiz through B and G into which the
proJection of B, F, G, H are B, F', g, H"

Then ABFF" = A@HH" by the S.A.A. ‘Theorem, and

we have BF" = GH" .. It fclliwg tHen in rectangleg
o BIF'F"B and G'H'H'G that BYFT and GTHT , the

’ k projections into £ of BF ang GF , are congruent,
and B'F' = G'H! } '

2
g
ih]

s
—
T

ERIC

Aruitoxt provided by Eic:



In Case (a), G' =

points of

(G H)

of "BBY as

subset of

are on the same side of
line AE.B‘FJ is a subset of GI'H' .

B! , and all polnts of
. . , e
except G are on the same side of BB' as F

that in line £ BF ™= GiE™.

(G,H)
50

In Case (b), all

including G are on the same side

F so that in line £ @'H™ 1is a
BIFT .

In Case (c), all points of
GG' as.

(B, F)

so that in

Thls establishes

for the three cases that *B'RF" || G'H'", and together
shows that

with B'F!

(a)
(b)
(e) =2

“(4) 1

(e) -5 .

3 .7

(a) r =

nof

1]
M

(b) . r
(¢) r

(d) r =

I
=

m L L

o]
1]

= GIH!

P =

Tl

L]

. o

]

]

[

L

v TPV N

()
()
(h)
(1)

(£)

[ T

1
m

= (GTHY) .

B
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R
Problem Set I&-2b
% . ~".\‘ :
1. DEFINITION. If xA,B) , (C,D) are two, directed line »
o segments, then (A,B) - (C,D) is the dire*ted line
segment (E,F) such that (C,D) + (E,F) = (A,B) .
The determination of (E,F) .when (K,BE) and (C,D)

are given 1s called subtraction of directed line
gsegments.
2. (a) (RC) . (e) (KR)7,

(
(b) (A,C) . (r) (EB)
© ) . (g) (KB
(d) )
(a) . (5,6) . (c) (&;D) .
. (b)) (B0) (d) (K,A) .
(

|

]
=

M

a) A directed segment of approximate length
extending from A ‘at an angle @f.épproximafely
157°  with ;

(b) A directed segment of approximéte length 2=

extending from C at an angle of approximately

157° with ““51 b

(c) The two are equivalent.

P

Length Angle __Origin

T

.3 Apprax! 79

=t

(a) Approx.
(b) Approx.
(c) Approx.
- (d) Approx.
(e) Approx.
(f) They are equal.

[

.e" Approx. 4Lo-

Lo
o]

A

c

.0"* ™ Approx. 85° A
.3" Approx. 67 A
A

L

.3" Approx. U7

6. Approximately 25° east of north and approximately
. # -
8.3 miles,. .

1 @ () (@) 3.
(). - T - (e) 3+ 7

3

() . ,_ o

. |
L

i
Euy|

ERIC

Aruitoxt provided by Eic:



n

NG

(a)
(b) I

a

=

) Problem Set 10-3

(e) I
(£) I
(g)i_ (

,er .

(e) I
() (53] .
(g)

™

[
[
[
[
(a) [5,-
)
[
[

) . (e)
) o (a)

-,

i
~ e
) [y

Il i
)
-
e
;h-yf;u —

md M

—
il
P

[ | 1 ] ]

g ‘

Ll ™ w

- I e

- OO

0 S

(a)
(b)
(c)
(d)
(a)
(b)

(c)

= a‘
Lo

Eﬁ wn

— — —
e
ol
hd I
1L
P < S

-

Approximately 5.8 miles per hour at an angle of

approximately

120

“(e)

(e)
(1)

(8) I7 .

(3,01 .

)

(0,0]



ERIC

Aruitoxt provided by Eic:
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>
1l
]

o]
il
]
Ul gi— -
e

b
]
1

Broblem Bet 10-4 \\

m" ..
[1™)

?FP : . P .
0 , (¥nfinite number of sclutions
_ satisfying. x + 2y = =%),

[

Problem Set 10-5

=

-

o

Let the trapezoid and median be lettered as

shown and the segments directed as shown.
=

—

therefore

But N

=

THus we can

- = == ==
EF = DC + CF - DE

2EF = DC + CF -

and CF =

5

- i
2EF = DC

AB 1t follows that

L

i

Then
EF = EA + AB - FB ,

DE + EA + AB - TB .



r
§
E-13

&
e

-Therefore EF = leAE + kAE) = %—§§é£5 s

. hence EF ||'AB || IE ,

a5 o 1 +k . ]
- an; EF = =h§==JAE| ,where J >0,

I
v
Y
[mal
+
-

o #
EF ="%(|AB| + k|RB|)
7 S

»f—f-f) _ hence EF-= %(AB} + DC), . AN

s

v Let the £rapezoid be lettered as shown and the
- " segments directed as shown. E and F are midﬁ%ints
v of AC and BD respectively. Now

DC + DF ; EF = BA +

!1
=t
&l

EF =

By adding,

T

EF = - AB - FB .

i

b‘nf =1
<
+
j Ej‘l’
+
b g,
+

Since CE = and Ef? = FB , we can simplify, and

obtain C;f 7
°FF = AB - DO . .

*.!j\
N

EF

1]
=
2
» .
8
Mot

i , , i T .
1 from which since AB }| DC , we can conclude, as in

the solution of Problen 1, ‘that

ERIC

Aruitoxt provided by Eic:



4 -*"'J. ! Let .thetriangle be lettered as shown and let

:Hémée 2X +y =2, x + 2y

BE and 3D be medians intersecting at P .

- — — S
Now g AP + PB = AB

Then
Cx(2T + V) + y(T + 2V) = 20 + 2V,

2xd + xV + yUu + 2yV = 20 + 2V ,

(2x + y)T + (x + 2y)V = 2U + 2V .

ww ‘M

E;'anci X =Yy =

The same result 1s obtailned f::y using the third
median with one of the first two. Therefore the
polnt Pw 18 an element of all three medians and
1s a trisection point of each.

Let the parallelogram be labeled as shown and
segments directed as indicated. E 1s the mid;ﬁcint
of AB and DE intersects AC at F . . J

A E B




%
T

AF + FE = AE = 3B ana OF + RS « ¢
=

but. FE = xDE , AF = yﬁ , DF = (1 - S‘E)DE » _and
TR ) F’E‘g y)Ag "and D6 = AB (AN

Hence,Fsubstituting into thé first two equatians we

thain respectively, . Foo

i

yAC + IDE = §DC or EyAC + 2xDE = DC
~and S (1 - y)AC + (1 - x)DE = DC ,
from which we obtain : R _
h ; . J
"2y =1 -y and 2x =1-x '
3y = 1 3x =1
1 ; e,
* T
Thus . AF = yAC = 3AC .

Let the parallélagram be labeled as Shawn’aﬁd
segments directed as indlcated, with E a point on

AB such that AE = = =AB and DE intersecting A€

at F.. = A___E - .~ "~ B .
- - " g ) y T .

mgm_u

but - =T = *“{é Q‘\% -
A;ngAc,Fc;—(lsx)A,F’EﬂyE,anq
=T - e
DF = (1 - y)DE |

T N RN S S
Thus xAC + YDE = =AB or mxAC + myDE-= AEL

Therefore mx = 1 = X

|
T T m+-1
Hence e 1~



., % .7 . Pprobiem Set i0-6 S

. 0, perpendicular. L L.

M

i

-
[

‘11, Stnce R®- E-%%Ei] NES = (12,8] , the scalar .
. product PQ * RS = 0 ... :

12_> Since

,Pié \ 4 2 R?,
then A . QR-0,0 . PR=68, R . BR =13
R tri

Since PQ - ﬁﬁ =0, APQR 18 a fight

13, (@-V) - (FF) = (F-V) - W+ (T-F) ¢ (-7)

; =W (U=-¥)-Z-(0-7)
=U--W-V:W-u-z+V.2
=1U « W =1uU . Z =~V W+ Vv - Z

=
;
. 4
T

b - - d

660

e
i



i ';,5 ’ &;T
.. 14, Proof: Let m be any 11ne ﬁhmugh ‘the arigin, o,
= - and let n be the: perp;_dieular to m through O ..

let P(x,y) be a point on m and Q(a b) be a
point on n nat the arigln.v B

W X
" __ - =
| 4
' 8ince m 18 perpendiéular to n, 63 . 0P =0 .
- In terms of components, since oQ = [a,b] and '
OF = [x,¥] , we have. [a;bi «*[x,y¥] = 0 which 1is
equivalent to ax +.by =0 . _
15. (1) Let u ;‘fplfpg] and V = {ay,a,) ; then
T V= P19, + Pyd, |Definition of scalar
= product
= Py + qul Gcmmutative properﬁy of
- ) numbEﬁa.
=v-:u., - Definition of scalar
praduct
then . ) :
(V+w) 7
=0+ ([q + t1 » 9y + t,]) |Definition of vector sum.
. =p (ql + ) + pE(qE + tg) Definition of scalar
-7 product.
= (p1q1-+p1t1) + (p2q2+pE E) Distributive property

Qanumbera )
= (plqlr+ggqg) + (pltl+p t,) |Associative and commutative
7 - “w, | properties of numbers.

i FDefinition of scalar
. product.




Chapter 10

= s - { */ Review Erﬂb}emé' ‘/f-f' -
- . . ’
. P 1. Proof: ' Let parallelcgram "ABCD have dirgcted
‘ Segments as shown and E and F be triseétian
pginta of AC as indicated. ‘

——

AE = 7AC = 7FC and A

- 8B

Il
=)
|

EB = ﬁE - ﬁiﬁ
i

EB = DF 4implies EB = DF and EB {| DF .-
Therefore DEBF 1s a parallelogram.
. . . ' i T : i . | I
2. Let parallelogram ABCD be as shown-and E and F
e points such that AB + BE = AE_and CD + DF = CF
: T
and BE = FD . -
) . A B E

m

=
+
B
1]
=
5
a
3
+
8
il
3




and FD = BE ';

-

_But AB =

hence AE = AB + B = _;v 5
which 4mplies that AR = FC. - and - E Hﬂrﬁ
Therefore AECF 1ia a parallelagram. T
. B =[-6,-10) , W ={-3,°5] . .
" Since [-6,-10] = 2[-3,-5] ,
therefore Q|| @R . ,
Hence ﬁssﬁ ll pio)
. But Q 1ies on both lines.
% Therefore, Q" = .
PQ = (3,8] , SR = [3,8] , imp;y;ng PQ = "SR and
=) II SR . Alsoe P, Q, R, § are not collinear,
because

W= [-7,2] £ (3,8) = |
‘Therefore, these points are the vertices of a
parallelogram,
(a) [1,2] .. v (e) [8,10] .
(b) [-3,-81 . (d) [-10,-6]
(a) (d) (B,A) .
(b) (e)
(c)

(K;B) = (D€) .
(5,4) = (G.D) .
(K,D) = (5,C) .
(5,8) = (T;B)

v [ n M. —
™
-

(5,¢) + (D;R) .

(a) (D;B) 2 (B,C) + (D,A
(b) (B;B) = (B,€) + (T;B) .

(KB) - (B,C)
(E;B) - (K5,D) .
-(B;R) - (B,C) .

(e) (D,B)
(d) (D;B)
(e) (D,B)



9. (a) (5,B) = 8
. £ (b) T (5,8), 2 45R) - ()
* (c) (T,B) pA(53Q) - (D;P)
? (a) (5,K)2-(5;8) + (0,F) .
(e) (D,BYy .= E(_‘é) + 2(0; P)
(£) (ET) = 2(59) - 2(5.F) .

E(D Q) + E(Q,P)
-2(0, Q) - 2(0, P)

IlJ /L
\I

'10. (a) x=3,y=2
(b) x=-1,y=3
’(':) ; X=0,y=1.
(d) x=0,y=0.
. (E) x = U s ¥ = ‘? .
S 11, (a) VIO . (@) ¥5 .
() 5. ° " (e) ¢5 .
- (c) 45 . r '
, 12. (a) [(2,1] . (a). [%,2]
* (b) [-2,1] . (e) [-4,-2]
(¢) [-2,-11] .
13, (a) 6 .- = - (4) 9.
(p) . (e) 1
{ec) 16
1%, 4 ., -
15. 0 .
16. (a) ()

17. 542 pounds.

18. ' (a) 500%3_ pounds.
(b) 500 pounds.

" T 66N

bl
|




19, .(a)" ﬁaééé in

3
' [l
1]

(b) Force in

R:!

[ M
=
=
[+

(e) Force in

20. 20.4 miles/hr.
"11° (south’of east:

* “ha
* -
} : N
o -

= e :

ew -
Y

5
11
&

.

P 24'1-i
. i )

665 .




Chéptéf- 11 - .

* ] .

ANSWERS AND SOLUTIONS

El & i":

—
o
~—
[ v ]

T e
L2
Mt
v

10 . (g) 8.

- 12 + 7 = 2 .
(b) £ -e+v 7 - 17T + 12 =2
(¢c) The result of the computation in each case 1s 2 .
(d) The number f - e + v 18 not affected. Four

-
P
e
o]
'
Ty
!
i
+
<
]
-

it
~J

- edges, 3 faces, and 1 vertex are added.
3 -4 +1 = 0.
. (e) There 1s no change in the result of the
computation. /

<27
666

v
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Problem Set 11-

[
i

X
1o
oot

“(a)

(v) 3 _ ; _

2. (a) 5. ° ‘ h .
(b) 7 . A

(e} . 17 . : ﬁf}

3. (a) 140 . : r

io o (b) 1260 .-

1%:: SG ¥ 36Q Vi .

(]
[o]

4. The measure of an interior angle &f a polygon equals:

- (a) 150 .

(n - 2)180-, (12 - 2)180
. m, T Tz

¥y 180 5&350-: : 360 _
(b) 180 »57= 5 180 - S5~ =

5. (a) 6 (e} lo. .

(é) 36 . (@) 7.

6. (a)] 180 360 60 120
()| 360 360 | 90 90
(¢})| 540 | 360 | 108 | 72
(@) | 720 | 360 | 120 | 60
(e) 1080 360 _| 135 hs
(£f) | 14%0 | 360 s | 36

7. (a) 162 .

(b) 18 . _

(c) 324q . ‘
7 .(d) 720 . (There are two at each vertex.)

8. 12 .

o 9., (a) 150 . : | s
e e e (b) No. The 'sum of the interior angles of a polygon
:depends upon -the number of triangles into which
the diagonals from any one vertex-¢an divide the
polygon and 1s not affected by the comparative
size of the"interior angles. The average of the
measures of the 11 angles is 150 . But this
’ does not 1imply that each of the measures is
' 150 . :
A : 567 . 2 iy

S




L3 . -
10. SN&. 'i!\e measure of ehch lnt-e.f-iar a.ngle of a re’gulai‘
palygﬁn equals 8 _ '
- number of sides ~and must therefore be integral

* -Ll;g&g‘a‘: 153 giveg a non-integral value to n. .
1. 36 . S ! oy
12,34 +méd+m£e—33(3, o
ml Ak,ﬁ"Zdi*Bk,méeElkkg
- 11 k = 330 ’
by k= 30 .
s . m L = 120 ®

Then /b and [‘3 are supplementary and, since they

are consecutive interior angles wlth réspect to 'C?
H

BA” and transversal "EC', 1t follows that AE || CcD

13, -~ . D — For all values of n > U4 , ABCD
18 a quadrilateral. AABC ¥ ADCB
‘by S.A+S. Then BD 2 TKX . Then
AAED £ ADCA by S.S. S. It
follows that m /BAD = m /CDA .
Also since m /CBA = m /DCB ,
and m /BAD + m /CBA + m /CDA
- A ' +m /DCB = 360 , it.follows that
2m /BAD + 2m /CBA = 360 or m /BAD + m /CEA = 180 .
Then /BAD and /CBA are supplementary, and since -
they are the consecutive :Lnter,iar angles of trans- v
versasgl EA and lines EC and AD it follows that

B

AD || EC .
14, m /CBX = 18,

m /DCX = 36 .

méX,E,Dilﬁ. ‘;
15. (a) & .

(b) 6 . _ o

220
668 | %




“(c) Yes. The meéagfé,afiéiéh interior angle would
have to be a factor of 360 , or

b

== 360 must be such that x 1s An

.integer and n 1s an 1nte§ef,§ 3. .
-t xE% =2+%.%§13@1ntegé?
for n only if n=3 , 4 ,.or 6 . Three
hexagonal tiles would be needed. '
(d) 2x + y = 360
2 . 108 + 144

360 ; 2 pentgéﬁns and one -
' deca’,ﬁr i_i '
360 ; jf%ébﬁecagans'and an
o . . . ’ qui;aggral triangle.
¢« - N6 polygon withjymore théﬁ\;lgi sides could be
" used since y > 60 and henice x <150 .
\x\!\ (e) Some of the possible combinations using three
regular polygons each with a different number
of sides are: 4,6,12 ; 4,5,20 ; 3,8,24 ;
3,10,15 ; 3,7,42 ; 3,9,18 . ’ -
" [The numbers represent the number of sides.]

2+ 150 + 60

16. ia) increases.
(b) remains the same.
(¢) increases.
(d): decreases. _ . ' v

Problem Set 11-4

1.. (a) Areas are 6, 12, 24, 48 , Ratio is 1 to 2 .
(b) Areas are 6, 18, 54 . Ratio is 1 to 3
(c) Altitudes are 20, 10, 5, 8 , . Ratio is
.2 to 1 ' L
(d) Areas are 2, 18, 162, 1458 . 1 to 3 ;
.1 %o 3 ; 1 to 9 ; similar.
(e) 1 to 9; 4 to 9., s




teachers in making daily assignments.

=
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 Theorem %1-l-----cceee o —___Problems 7 =~

(a)

Ci
S T
[
L
“pof e
»

—  —,
Lol
Nt N
[
o ot
Lo o
e I ]

B ‘mv ——

=%
N st
Sl
ct ot :J‘
o O
W e

F

o & ,
2 4% + 2ab = (a + b)°

o]
[ ]
[}
]
o
o

ol Bt . A=a

blab Bob . /

5 b -

-

%

6
() Ry » Ry R5 o :
(¢) (d) (e) A rectangle is separated by its dilagonal
into two congruent triangles. 7
(f) Combine steps (c), (d), (e), Postulate 27, and
the addition property of equality. -

(a) Ry, Ry,

Problem Set 11-5

The fo®lowing classification of problems should help _-

Theorem 11-3-------+-=-=---—--Problems

et
[} .
O

Theorem 11-5---w-ee--coa—o—.__-Problems 12 - 16.

Theorem 11-6------ceceeeeo____Problems 17 - 20.
Theorem 11-7=-=-=--==-=--=c—-—-Problems 21

=
[y
L]
o
o
=
E\
]
Q
=
w
I
1
i
1
1
1
1
I
A
i
I
I
1
1
ll
|
3
o
H
o]
P
b}
o
=
1]
L v ]
R
[
Ll
= L

=t
30 i

72
36 ‘ N <

fils
<31
670



i W 1843 .

n?

) 1
: o1 y L 4r
. 6. (a) h - (b) 3 37
. 2l (c) 3 (a) »

6 B
, -8; ‘(a) 3 to 4 (¢) 1 to 2
" (b) 1 to 2 . (4) 1 to 1
1“9; ‘(a 12 " (e) 1247 ,
| (b); 1243 (d) 1643

By hypothedis we have an equl-

lateral triangle AEC with the
* measure of the side = s and -
area = A ,
’ We are required to prove
b 4 £ 8°
A D B . A= E§ﬁF£z* :
Let D be'the foot of the altitude TD upon AB .
. Then o RN Lo
¥

(a) DB =AD or I

5

=% (a) The altitude of an
equilateral triangle

. i bisects the base.

*(b) 2 - 5P ir(é)? (b) Pythagorean Theoren.

(c)

)
]
o

]
1]
oy o

V3. (c) From Step (b) with
’ the properties of
equality.
(d) A = zas (d) The area of a tri-
. .angle 1is half the
¢ L “.'product of any bgse
|  and the altitude
o 7 upon that base.
. (e) A= %&%1/§)s or ~(e) From Steps (c) and
(d) using the sub-
.8titution property

g
1]
| em I
W]
N

of équaiity.
*Puplls shéuld be able to Dmit this Etep and obtain.
CD from Theorem T=10. ! .o

671 Oy -




™

80 R

-
g
(s}
‘ 1}
=
O
o2

1}

1

15. In a square with length of silde

I

= 8 , length of diagonal = d
and area = A , we are required to
prove that

A =

Y

A square is a rhombus and also a rectangle. As
rhombus, A = é the product of its dlagonals.

™

:rw.f,ﬂ—ﬂ n:? o]

rectangle, its diagonala are equal. Hence A =

32

* 8“‘

e
o o~ O

56.2
19. (a) 70 (c) 7043
(b) 7042 (@) 140

20. 5

o

v 21. (a) =21 (d) 36
(b) 102 . (e) 18
(¢) 12 ‘

1643

Let ABCD be the trapezold with AB || TD . We use
the coordinate system in wh;eh A 1is (0,0) ,

B is (a,0) , D 1s (b,c) , and C 1s (d,e)
where a >0, o >0, and d >b. ) D(bgc) _Ctde)
The midpoint of DA 1is /é \F

I
%)

[
L]
M

=

= (%, %), The midpolnt of - \

. . _(a+d ¢ . . —
is F=(55,3). Then Afo. o Bla,0)

a+d-b -
2

o]

- _&a+d4 b
F = S%—-%

=
M

= »

noj

. BB+ DC

AB+DC = a+ (d=b) = 2EF, and EF = 22 But ®

m = EF and h=c¢ are the lengths of the median and
altitude, respectively. Using Theorem 7-1 we see
that the area is given by h- 2222C o hn
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28.

29.

32.

‘'one palr of adjacent sides congruent. AD = BC

st
M
=,
14
]
ot

s
H
)
w
(8]
y

AADC = 4§, Area of AABD = 35 , 1

Total area gé-: - 7(26) +% . 5(28) =161

Area PQBA = 63 i Area QRCB = %0 . ¢
Area of ARCD = - (4o + B63) =
'Measureé of the sildes are 1/22 + 1/8 142 ,

6° + 82 or /20 , VEE . *Vf 100 . Ey the converse of

the Pythagorean Theorem, these sides form a right
triangle. The area 1is %VEVTD = 20 '

2[«'1

(a) D= (‘2356)

(b) A =3%yIPBy3I2 = 32

Altitude = 6 ; Area =

i
'
——
o
~
o
n
[
=

) 1 - 1, . 1 1
Area = §( 9) + =(5 - 9) = *§(9 ©9) = Yoz
Area of AEFC = Area of ABCD - (Area of AAEF
+ Area of AEBC + Area of AFDC)

_ 1

=7 5- -

(3 245+ 5+2 ¢ 7) =12

M) =

ABCD 1is a parallelogram and ABDE 1s a parallelo-
gram since in each one pailr of opposite sldes are
both congruent and parallel. ABC is a rhombus and ‘
ABDE 1s a rhombus since each 1s‘a parallelogram with
EA

= BD by hypothesis or because they are opposite sides
of a parallelogram. Then AD = BD = AB and AABD

1s equllateral. Similarly AEAD and ADBC are also
equlilateral. Moreover the three triahgles' are
congruent. Ther'eforé the area Df r‘hambus AEDB = area
of rhombus ADCB . ‘ + AD and
Area of ABCD = %AC
ZAC - BD = 2EB + AD

%AB . AG = ﬁrea of AABC = EAD = BC
There’f‘orﬁ'ég:AE * AC = RBC AD
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34, In term diagram we must prove that
Area of ABCD = #DB + AC

‘Area of ABCD Area of AADB + Area of ACDB .

- 8ince AC | DB , this becomes

v I

| ZAP * DB + %PC * DB or SDB(AP + EC) .
. But . AP + PC = AC '
Therefore Area of ABCD = 5DB + AC .

S :
Problem Set 11=6

c =

1. Proof: For definiteness we prove the theorem for a. -

get of three parallelograms.-

(a) By hypothesis, all the bases have the same
measure, say b ., Let the areas of the
parallelpgrams be A, A', A" , and let the

) h, h', n"

A

Now A = bh , A" = bh' , A" = bh" ; hence the
numbers A,.A', A" are proportional to the
numbers h, h', h" with the non-zero number b
as the proportionality constant,
(b) By hypothesis, all the altitudes are the same
number, say h . Let the areas of the triangles
be A, A', A" , and let the corresponding bases
be b, b', b" '

b _:
<

"

pa
=3
=

ERIC

Aruitoxt provided by Eic:
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Now A = hb , Aésélﬂﬂ , A" = hb" ; hence the
numbers A, A', A" are proportional to
b, b', b" with the non-zero number h as the
proportionality constant.
(¢) By hypothesis, all the areas are the same number,
say A . Let the bases of the triangles be
. b, b', b" , and let the corresponding altitudes

P e, RY, h' . - ‘
Now A =Dbh;, A=b'h', A=1b"n" or
bh = b'ht = b"n" = Af! Thus ‘b, b', d" are

inversely proportional te h, ht', h" .
11 three have the same area since all have base .

AB and altitude AF. . %

I
»
=

3. Each triangular-region has the distance from E to
*EE‘ as altitude. Since the bases of Ry, R,, and
- RS are p;@p@rti@nal to 1, 2, 3 , the areas of
Rqy» RE’ RB are pﬂ@g@rtianal to 1, 2, 3 by
Theorem 11-8.. . )

Area of ADFC _ h'
Area of ADEB n
ADFC are parallelograms.

"*f‘v 11‘ :: AQ‘ ad e - S =V-ta b
Now = §E since correspondin

triangles are proportional,

=

by Theorem 11-9a since ADEE and

I
P
[
ik
m
]
L8]
4y

pi]

i
3

[
b=
vk
H

: AC _ 10x _ 5 T

S v: I |

Then the areas of ADEB and ADFC are in the ratio-
of 2 to 5

ERIC

Aruitoxt provided by Eic:



5, By hypothesis we have

- - parallelogram ABCD divided
into 4 triangular-regions,
AEB , BEC ,,CED and DEA

y diagonals AC and Eﬁ .

=

g are required to prove
~ “that all four triangular
A h : B reglops. have equal area.

Let h be the length of the, perpendicular from D
to AC . Then h 1s the altitude of AAED upon

base AE and h 1is the altitude of ACED upor EC .
AE = EC since the diagonals of a parallelogram
bisect each other. Then

Avea of AAED = mh + AE = #h - EC
But AAEB = ACED and ACEB ¥ AAED (S.S.S.).
Since congruent ‘triangles have equal areas,
Area of AAED = Area of ACED = Area of A AEB
= Area of ACEB ,

Area of ACED .

iz the median of AAEBC
forms two triangular-
regions ADC and DBC

ot
dl Sl

We are required to prove that
| regions ADC and. DBC havé
A D B equal areas,

Both regions have the same altitude (the length h
of the perpendicular from C to AB .)

- "AD = DB from the definition of median.

. Zn - AD < 3h - DB, and thus

Area’of region ADC = Area of region DBC

Ll




By Problem 6,
Area of AACD
‘ and
Area of AAOD
Then .

it

Area ci_f AE;D

Areag of ABOD .

[}

+ r

Area of ACOA = Area of ABOC
Similari& it can be proved
using median BF that ~

Area of ABOC Area 6f AAQB ,

Hence Area of AAOB = Area of ABOC = Area of ACOA .

reglons of equal area; so if the cardboard triangle
- has uniform thickness, we should expect the regions.
to have egqual weilght. K

9. Area of AABO Area of ABOC Area of ACOA

" y | 2l . 12

Area of ABOE = Area of AAQF
2

Area of AQDB :
/ = 'Zé“ = 36

m

(d) 3 to
11 to 1

———

-

o ——

A

ot

o o

O
oo

o

o
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13. No. Let b, h; b+ 5, h - 5, denote a base and
ccfresﬁénding altitude of the first triangle and a
base and corresponding altitude of the second triangle.
Then their areas are equal if aﬁd only 1if

bh = (b + 5)(h - 5) = b + 5h - 5b - 25 ,

that 1is, 1f and only if

h b+ 5,

14,

PPJ
K2l e

Probliem Set 11-7

b
5

e
i)

If on CTA points D and. E a
selected such that CD , CE ,
are proportional to 1 , Ve , V3
and if through D and E , OF
and EG are parallel to AB ,
then the required polygonal-
regions will be determined.

e
>

A method for locating D and E
is begun in (a) where GTN 1s any
convenient unit, ¥NO | WGT, and
OP | OCT', and completed in (b).

678 N k



side and N', O', P' on the other side so that
ClTAY = CA, ClNY ¢, crior = cro, Ctipt = C'P.
Draw parallel lines as suggested in the figure,
Use lengths C''D' and C''E!' to locate D and
E; draw BF and EG parallel to AB.

(b) On any angle with vertex C'!, take A' on one

1]

Area of CDF , Area of CEG ,
Area of CAB are proportional to
(GD)E , (CE)g s (CA,)E or to

1, 2, 3 . It follows that
polygonal areas CDF , EGFD

and ABGE are each of the
area of ARC and are therefore

(o

* - of equal area.

7. Let K be the proportionality factor. Then by
definition of similar polygons,

=K+ A'B! ; BC =K - B'C!'! ; CD=K - cIpt

K - D'E!' ; ED

o
o

‘U
t
]

K * E'A' ; and the corresponding

- angles have equal measures. It can then be proved
that the corresponding triangles formed by the
diagonzls and the sides of the given polygons are
similar. Thus by the SSAEEE Similarity Theorem

AABC ~ AA'B'C' and AADE ~ AA'D'E! .
m /ACD™ can be shown equal to m /A'C'D' and
(AC,DC) 5 (ArC',D!'C') . Then

AACD ~ AA'C'D' by the A.S.A. Simllarity Theorem
e wa ths = “R1? : = "Rt 8
It follows that Rl = KR 13 RE‘ KR 5 and
2

HB KR since the areas of two similar triangles

are proportional to the squares of. any two corre-

sponding sides.

+ Ry + Ry = K°(RV) + Rl + R'y)

Then Rl 5 3

[

or the area of ABCDE = K°(the area of A'BIC'D'E')
Area of  ABCDE  _ K2 = (ﬁAE,)E _ 2
Area of ATB'CIDIET = \x7pv/ =

L

L

]
) |
2 g

’:‘;"if L
5]9‘;’ X t;)

ERIC

Aruitoxt provided by Eic:



The proof in Problem 7 would be changed to show the
area of ABCDE...N = K° (the avea of "A'BIC'D'E'...N').
This requires the insertion of an indefinite, finite
number of triangles of the fprﬁrgf AACD Dbetween the
triangles containing the side of the polygon having

A as a left endpoint and the one having A as a
right endpoint. The corresponding pairs of such

.triangles can be proved similar by the S.A.S.

Similarity Theorem. The procédure 1s similar to thaf

[w]
L]

ILet sguare ABCD have —
sides of length a -7

Then square ACEF has
sides of length a4/2 .
Then ; _ d _ _

Area ABCD = a

Area ACEF

1]
]
Mt
M
]
v
o
Juh]

i
H
1]
]
>
ﬁ‘
o

J
0 -
pS
i
P




&

By hypothesis AABC 1is equir;
lateral. CD 4s the altitude
of ABC ; length of CD = a .
ACBF ~ ACDE with side TCB
corresponding to €D , We are
regﬁiyed‘to show thét

Let

Area

Area

Oof ACBF _

Area of ACBF _ 4

Asréa* of ACDE ~— 3 -

5 be the length of a side of AABRC , ¥

since the areas of two similar
triangles have the same ratio

ol ACL

as the squares of any two
corresponding sides.

But the altitude of an equilateral triangle 157343

times the length of a s3ide of the triangle.

Area

5

M

of ACBF _ 52

[ ]
1
lag

Area

of "ACDE = 77~ (ZZEiETE

18. Let gi = length of the wire.

=

Then

Area

:

area

Area

length of side ‘of the square and

1

= length of side of the triangle.

RENEEN

of the square = = E
742
of the triangle :‘Z%; g

of the square

Area

Yes,

of whieh the side 1=z the base,-

20

of the triangle fﬁ7?é

&

Problem Set 11-8

It is the altitude of an lsosceles triangle s

K-
=

=T
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6. L¥< ;rﬁ;Lkrﬁ,ErE

. . 2 2 L
7. (a] T3 250G

(16 4/3)(24) = 192 /7 .

(b) #bh

.2 ' )2 ‘
/3 L (6/WE g 7

8. (a) 28843 .
(b) 4843, A =

&H
e
il
o
=
I
\Eﬂi
1]
I
e
120

o2
I
1
‘©
&
>
I
]
10
1
Je
; L
i
o
il
e
o0
o0

Problem 5et ;lEQ

/

Regular Boundary | Number | Number | Number Number
Polyhedron of of of of of Faces'
Face Faces | .Edges | Vertices | (or Edges)
at a
Vertex

Tetrahedron |Regular 4 6
_ - triangle
Qetahedron |Regular 8 12 6 U
triangle

[

Icosahedron Regular 20 30 1
triangle ’

Loy
-
|
Loel]
1Lad

Hexahedron | Square

[
n
L
o
P
2
L

Dodecahedron Regular
pentagon

2. f-e+vs=2
(a) 4 -6+4=2
(b) 8 -12+ 6 =2 (e)
(¢) 20 - 30 + 12 =

=
(i8]
1
(]

u_ﬂ
Ldng
(@]

.
+

o0
e}

O N
] M
[

M

Yes\, the property does not appear to depend
upon the length of edges or the measure of

angles,




VR ' . L
3. A polyheéedron conslsts of & finlte number of polygonal

reéigns jéined togethef in a manner.specified in the
definition. Two planes M and N intersecting in
line gél
no. polygonal regions, as in (a) below. -If a third
plane R 1intersects plane M and plane N _in two
distinct lines £ and §£§3 respectively ag in

(b) and (c) below, again no polygonal regions are

formed. It takes a fourth plane to form a polygonal
region. These reglons, now formed, satlisfy the require-

form regions which are halfplaneg but form

lin]

ments specified in the definition of a polyhedron.

B,



Problem Set 11-10

1. Let m represent the measure of the third face -
angle 1n each of the problems.

(a) 25 <m < 175 (d) 30 < m < 40

(b) 25 <m < 135 (e) 85 <¢m < 175

(¢) 75 < m < 165 (f) 15<¢<mc< 175

2. (a) + (e)

‘ . (p) o (r)
(¢) + (&)

(d) o (h)

@]

+ O ©

=

& Problem Set 1l-1la

1. By definition of a prism, therlateral faces of a

prism are parallelograms. If €1, €5, €4, €ysee
- represent the lateral edges, ahy two consecutive
edges, such as ey and €5, OT e, p
parallel since they are opposite sides of a parallelo-
gram. It follows that e, 11 ey since 1f two lines
are each parallel to a third line, théy are parallel
to each other. By continuing this reasoning, it can

be established that all the edges are parallel to

and ey, are

one another,
2, Let €15 €5, €35 €5 ...€ be the edges of a right

prism with bases B, and B, .
By Problem 1, e, 1 es 11 e, Il ey [T .. 1] e,

.

definition of a right prism, one edge, say e
perpendicular to one base, say El - Then, by
‘Theorem 9-11, B, 1s perpendicular to i
s €35 €Yy ..y Since B, ||.E25 by definition
of a prism, e, 1 B, by Theorem 9-10. Then, again
rusing Theorem 9-11, B, 1 €ps €q, €y, w..e . Thus
every lateral edge 1s perpendiculag to each base.

[na]

Y
8

ke

ERIC

Aruitoxt provided by Eic:
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Problem Set 11-11b

(I§§ Opposite sides of a parallélcgraﬁ are congruent.

(2) Definition of a right section

(3) * The area of any parallelogran ‘equal.a thé product
of any base and the altitude upoﬁ ﬁhat basge,

(4) Distributive property of numbers

(5) Substitutlon property of equality

In a fight prism, the base 1s a right section. It
a rlght pri,m is the praduct of the lateral edge and
the perimeter of the base.

210

Total area = lateral area + 2 - (area of the base)
= 240.+ 2 - 16 /3
L= 240 + 3243 .
3,6,343;30,60, 9 ;2¢3.

5.2
The measure of each side of the base 1is 16 . The
lateral area 1is QQQ 20 , or 1920

Total area lateral area + 2 + area of base )

i 2020124210+ 12 + 2 - 12°
(aititude of faces with angle of
measure’of 30 -1s 10 L)

2 . 12(20 + 10 + 12)

= 24 (42)

1008



9. . . The diagonals of a rectangular
parallelepiped have equal

£ =

% : e length. :

Proof: . There 18 a éac::igdinate '

o , , system which assigns
Flooe) . G(n,b,c)_; coordinates to the vertices .
.of a reets.ngglar‘

(apcE L __{ahelH/ y parallelepiped as shown in
A(0,0,0) Blo,0) the diagram.

Diaoo)  Clabo)

Then in terms of the data on the diagram we are
{ required to prove that EB = DG = FC = AH .
By ‘the distance formula

" BB = ¢/a° + 1

kAHz,ag+

o
i

+

e ]
M\

8\

o

i

%

‘*IF: S '

+c ;L'FG
DG = AH = FC

\
2
H
I
]
(o
i
1]
=
]
il
g

10. Using the diagram of Problem 9, we are required to
prove EB , D@ , FC 4 AH bisect each other or that
the same point is the mlidpolnt of each diagonal.

: Midpoiﬂt-af EB = (%; g; %) H

(3 2 3

b %)
o

Il

TNy T
o

e

midpoint of TG

midpoint of ¥C = (5, 3,

midpoint of TEH = (’%; %;

%)

Siﬁc:e‘,—all the diagonals have the same midpoint, they

bisect each other.




Problem Set 11-12°

By hypothesis we have a regular
pyramid V-ABCDE...N . We are
_required ta-gravez ,

AAVB , ABVC , ACVD ,; ete.,

are lsosceles and are qangruent
‘to eaéh_ather; '

(1) Let O be the foot (1) Definition of
of the | from V regular pyramid
®0 the base. Then
0 18 the center of
ABCDE...N .

(2) AB=BC =DC=DE=.,,= NA.[(2) Definition or
regular pyramid
(3) 0A =0B=0C= 0D = OE ., (3) From meaning

ete. _ : : of center
OB AVOC , (%) s.A.s.

[

2

fi.¢

VD , ete. (5) Definition of

congruence

(6) AVAB , AVBC Avap , (6) Each has two
etc. are isosceles, congruent sldes,

‘ ‘ - Step (5)

AVBC = AVCD , etc. |(7) S.8.8. Steps

{2) and (5)

1]

(5) VA =VB=vC

e

(7) avaB

The faces of a regular pyramid are congruent triangles
as prcveé in Problem 1. The area of each triangle
equals % the product of a base and the altitude
upon that base, {f 8 1s the length of a side of

the regular polygon and n the number of sidesa, then-
there are in the lateral area .n triangles each of
area %as . The lateral area = %as s n = %ﬁp slnce
the perimeter p of a regular polygon of n

sides = ns



L

%+ 18 = 49%‘sg; in, :

-
1]
[
3
]
L
m_.,l‘ =
Ay 81

= = ‘":ﬁ .
,9§ or %g ; depending upon the units used,

¥

Trapezold

A

(b)

(c)

(a)

%;'a('pﬂsp') . R .

; 212

‘Two parallel planes intersect a third plane in

two lines which are parallel to each other, and
a line cutting two sides of a triangle and
parallel to the other slde divides the triangle
into two similar triangles.

It VO 1s the altitude of V - ABCD , then by
definition 1t 1is perpendicular to the plane of
the base. It must, then, be perpendicular to
any line in that plane which contains 1ts foot.
w perpendicular plane of EPFGH s8ince a line
perpendieulaz to one of two parallel planes is

- perpendicular to the other: Then use the A.A.

Simllarity Theorem.

9. Egea of AVAB _ 'AE)E _9
5 7 Area of A ’

2hg
[
\@ By m

Areas Qf'similaf Efiangles are in the zame ratioe
as the squares of any two corresponding sides.

Area of AVAB - Area of AVEF _.9 - 4
T 9

— Area ol AVAB
Area of one section of frustum

3

‘fA’r‘éa ol corresponding lateral face 0 °

688
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'.7"12. Prgaf

(a) 1. ~ Plane A'BICY 1, Definition of ‘a
]l plane AEC . cross-section. ]
s 2. If two parallel plaries
, intersect a third
. Plane, the intert
sections are parallel.

E!

aﬂa

3. AVBIC! ~ AVEC |3, A line parallel to one
AVA'B! ~ AVAB slde of a triangle
AVAIC!' ~ AVAC . and cutting the other

two sides divides the

triangle into two -
gimilar triangles.

y, AB'_ VB B'c' 4., The measures of

7”77 corresponding sides

= = ’j&é . of similar triangles

' are prcpcrtioﬁal.

; A'E' BIC! AICH . Transitd brope pt *
> “EB T B0 = “AC-|5- Transitive property
of equality.
A'B'C! ~ AABC . - |6. S.5.S. Similarity
Thearem.

O
[

() 1. AVA'P' ~ AVAP . 1. A.A. smilarity

) ’ " Theorem,

1 1 1
VAL g%é = X . 2. Corresponding sides
of simllar triangles
are proportional.

3. But o= = = . 3. .Corresponding sides
. of similar triangles
o ' are proportional, -

L e A'B' _ k| 4 aririas
4, Therefore v 4, substitution
property of equality.

Area of AA'R'C' _ P
5, Area of AR — = 5. Areas of similar

polygons are
proportional to the

—_

tA'B')E = (g

“AB

squares of any two

corresponding sides.
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Chapter 11
Review Problems

. i:‘ = N . ‘ ) }VL < - “
156 , 24 d , o ’ SY:E

36

1

2 .
3. No. 2[(n - 2)180) =-(2n - 4)180 # (2n - 2)180 .-
)4: ) -

5

. 64 to 169 : : e

a

44 < measure of third face angle ¢ 156

6. (b), (d).

7. Yes. Squares, equilateral triangles and various
combinations”as discussed in an earlier problem set.
The sum of the neasures of the interior angles must
be 360 . o )

W

"y,

i

V3.

1]
e,

. - o2 .
8. (a) he + - =58 ; h® = %SE and h -

(b) A = %hs 57%(%4/5)5 ;'g%;sg

9. (a) ¥3 () 43
(®) 16y3 (a) 3 ‘

=
(-
w
I
H
[}
=
I
Loy}
=

14, lLet %he length of the
side of the isocsceles
right triangle be e
Then the length of its
hypotenuse is -e./2, and
the area of a aquare on
the hypotenuse 1is

(e 2)° = 2e° . The area
of the triangle is %e s
which 1s one-fourth of the A

I

“area of the square,.

691 e
250




17.

Ay

-t

" Alterndte solution: The five triangles in the

drawing are all congruent; so all have the same
.aréa. Therefore, area BCDE 1is four times

area AAEC . ,
BE = 12 .

1l
C
=

(ty " cp
(c) (Bc)?
BC = 16
(a) 3(cE)(cF) = }(cE)?

il

]

3(cE)? = 200,

: ”

256 or. .

o
(¢)

(a)

(e)

From the gilven area of
the square, -

By hypothesis and

Step (b)

Pythagorean Theorem

?:? R ‘ i

3

(gﬁ?;iﬂsuffigient-data'
5y 3.

‘: ¥ st o ’
Th§ area of RSPQ 1s

(triangular regions as:
shown.  Use the S.A.A.
Theorem tgijuatify this
émpléyment of the

triangular regions,

(o)

(r)
()
(h)

8143

216 e

Insufficient data

3043




s = co B

2. Consider Ef as a base for ABXC and BA as a
base for parallelagram ADCE . Then the area of

BXC is ﬁ of the area of ADCHB . - By similar
argument, the area of ACED 1s -4- of the area af‘
ADCB , EW'aubtraeting the areas of the two trianglea
from that of the parallelogram we have the ares
AECK or ,% the area of ARCD . )

-
i

23. Since AB is constant then the altitude to “AB™ must
- be constant in order for area to be cgnstant Call
the length of the altitude frem P to “AB™ h . Then
- in plane E , P may be any point on eilther of the
twa lines parallel to AE at a distance h from
AE . In space, P may be any point on a cyl;ndrical
gurface having “AB" as its axis and h as its
- radius.
24, AC = 94Z ; AF = 9-,/’§ FC = 9% ; m /FAG

AFAC 18 an equilateral triangle whose area is

Gy o BT

‘25, The diagonal of a cube = e + (e VE)E =
where e 1s the edge of the cube. d = 643 .

[
Loy
Lo ]

26, : Suppose AB > CD, Let .EF
[ ¢ be median of ABCD. Take

M on .AB 80 AM = EF .
e i Draw DM . Then AMD and

MBCD are the required regions.

Area of AMD = gh * AM = 2h * EF .

Area of DCAB = h + EF since the area of a trapezoid
equals the product of its altitude and its median
(from Problem 3, Problem Set 11-5,)

693 25 5
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S
ment™ , o

Area of. AMD = % of the area of ABCD and the
area of MBCD must. be’ the .other half of the area’

‘ * of ABRCD ‘and thus equal to area  AMD ,
27. : - Let DE and CF be perpendicular to.
. o o . KB. Then AE = 4 and DE = 4,/3
- . '= CF. "~ Then SACBF = ADAE

since they are right triangles
with one leg and an acute ang;e :
“econgruent. Then BF =4 , =

, ) L

EF = ¥ = DC .

Then the area: af AECP ~

0 yT(12°+ 4) = 3243 .

28, AB =9 ; DC = 5 ; altitude of ABCD = 2
Area s% 72(9 + 5) =
- E
29. (a) P§ 1s the medlan of trapezoid AECD .
“oc” | |5E”.

D __C
We are reguir‘ed to pfcve that ‘
PR || TC, R || AB \and / Q
PQ = §(AB +DC) . / 1‘\

Let _ K be the pnint of A B
intersection of AB and
i]i‘- Then ADCQ = ‘AKBEQ

(by A.S.A.) and DC = BK and DQ = QK
(definition of congruence.)

In ADAK and ADPQ , DA = 2DP‘, DK = 2DQ ,

/D= /D, so ADAK ~ ADPQ . * Then /DPQ ¥ /DAK
and AK = 2pQ . PQ || AB "(since corresponding
angles are congruent) and hence PQ 1s also ‘

|| DC

AK

il e

AB + BK = AB + DC = 2PQ .

Hence PQ %( AB + DC)

(v)
(e)

[t m
e -




30.

31.

=

Draw M H AKX , CK , and- BE . Call the inter-

Area of trapezoid DFEC = 34 ,

Area of trapezaid AGFD = 165 -, and 80’ area AGECD
= 199 . Area QAGB 30,

Area AFRCE = BE§ ‘Subtracting ‘the sum of the areaa

of the two tflanglea from AGEC:D ;. We have 136%—
'I'he area ci‘ the field is l36§ square rods. )

Hypotheais In right triangle - ABC , /C 1s the
right angle., ABHK 18 the square on AB ; BCGF 1is
the square on CB ; CAED 1s the square on Ch .

Jve: Area of A}ﬁ’ = area of ACDE + area of
;' " EFGC &

sectlan cf CHM and AB s L.
D
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Statements: ___ Reasons

AKAC and A BAE

*

r

>
(us]
|

1. 8ildes of a 8quare are
eangruént; "
gmc m /BAE . . {2. Each 1s the sum of 90
e and the measure of -
" /cAB .
3. Then AKAC X ABAE . S.A.S.
4, Area of AKAC = arqa |4, Congruent triangles

-
a&H 5|
e g
:H |

no
a

L

“’f’ of ‘A BAE . o have equal -areas.
. § A, C, G- are collinear 5. Two adjacent right

f‘ and B, C, D are v angles form a linear
collinear. - pair,.

6. In ABAE and square 6. ™DB | |"EA” so the
ACDE , AE may be con- perpendicular from B
sidered as the base. to “EA has the same -

. Then in each, CA has length as CA .
the same measure as the
altitude upon base iE .
7. Area of ABAE = =§ of {7. Area of a triangle is
the area of square ACDE_ %bh and area of the
square 1s bh .
8. 1In similar manner, AKAC |8, BM || A so the
and Peitangle KMLA may perpendicular from C
be considered as having . to XK” has the same .
> ' AK as base and TA as length as TA .
) the altitude upon BAK .
9. Area of A KAC z% of 9. The ?PE& of a triangle
§bh and the area

]

the area of rectangle i
KMLA . . of a rectangle 1s bh.

. 1 1
10. -area of KMLA = 5 areallp, Substitution property
of ACDE or area of of equality, usi’ng\
KMLA = area of ACDE , Steps 4, 7, 9.

696




32,~

a3,

.11y In like manner, aftér

L : v ﬁ“!
/

drawing ﬁif*ané JH ,
"1t can be proveg:that
area of MHBL . "= area

&

of BFaC . & . : >
12. Then area.of KMLA + - | 12. Addition property
. area of MHBL = area of equality.
of .ACDE + area of )
"AFGC ; hence area of : e
. AKHB = area of ACDE
. + area of . BFGC .

ABAC ¥ AATU by (S.A.S.). Then AU = AB=c
(definition of congruence.) The area of

BCTU = ph(b, + by) = 5(a +b)(a + b) = »(a® + 2ab+b?),
But the area of BCTU equals ‘the sum of the areas of
three right triangles. (/BAU 18 a right angle since
/BAC and JUAT are complementary.)

of BCTU

%ab + %ab + %‘32 = %(231; + cE) .  Then

2)21(ag+23b+b2),and c® = a® 4+ b2,

Cube AG has M, I, K. as

midpointe of the sides which
meet at A . The length of
the side of the cube 1s 12

We are required to find the

total area of pyramid

M - AKL .

The area of AMAK = area of
AMAL = area of ALAK = 18 .
MK = ML = KL = 6 42 ; then
area of AMKL

5,'*—2
- (62" m) -8y .

1]

The total area of M - AKL = 3 - 18 + 184/3

18(3.+443) .

11. Steps 1 throu :,.10.'
| Sy



34, 10p = l&BD here "p = perimeter of the pase.

Side of tfe base = g = 8 ; apothem = 443 , . The

i lggsea are cangruent. regular hexagonal regions each
the union of six congruent equilateral triangles.
The silde of esch triangle 1s 8 and its altitude 1s
4 /3 . The area of the two bases: Z B
= 2(5)(5)(8)(4 ¢‘3) = 192 43 . The total area

= 480 + 19243 . . '

e
-

ff" 698




- " Chapter 12
N ) ANSWERS AND SOLUTIONS
- Problem Set 12-1
¢ e L T
- 1. (a) (1) chord, secant X
© - (2) radius v
. (3) 1length of the radius or jJust radius
'J} - : (4) diameter; secant .-
"~ (5) chord; secant .
(6) A, B, N, T, R, M, & -
(1) Q¢ 0 |
(8) outer end; 03
(9) outer end
(10) OM or .0S or equal to the radius

oy

,% (b) (1) radius
S .. 7 (2) A, M, H, B
: {3) diameter
(%)  great circle
(5) chord
( (6) - sphere, one and only one
/ (7) a circle, O, OH or OM or OB or OA
' (8) an infinite number
an infinite number
congruent gv
(9) a point which is to be the center and a
) number which is the radius or a segment
- ] which is congruent to the radius
(10) an infinite number '
concentriec spheres
2. (a) o . (e) © ’
(b) + (£) + key O = False
() o . (&) + = Tru
(@) 6 ()

+ + +
.m.
o
]
]




3. (a) o ' (a¢) o (g) +
(b) + -~ (g) o © (h) o
(e) + (£) o (1) o

b, Ya) (1) Ax ?4552 +'2y”§ 0)? - 7%2 -
(2) x° +y2 = 25 '
(3) QE:O) ] (EEJO) H (035) » (O?,E) R

also many others,

(4) P :1/(;3 - (‘3)E + (Eé— o)2 z.,/ge'fifzy’ﬁ'

(5) x% +y* =13
- (6) x° 4 v° = 61

(b) (1) &
(2) v° + 22 = 16
(3) RP :1/(3;:—— 0)? + (5 - 0)% = 43T
S8ince RP > 4 , R 1s 1n the exterior
of the circle.
() ¥° + 2% =y

?&x *4)2 +AE§ - gjé

5. (a) Ba

(0) (x- %2+ (z-3)2 =9 or Ry
: x° - 8x + 2° 62 + 16 = 0 2y

: ) SR
(¢) (x+ 2)2 + (y - DLE =4 or x° 4+ bx i v =0
(d) :(i - h)E + (y - E)E = prt

6. (a) Yes (¢) Yes
(b) Yes - (d) No

=

7. }E';+y2+3239

(a) Nes (e) Yes .

ol (b) Yes (f) Yes
(¢) Yes (g) No
(d) No

9. (13,0,0) , (0,0,13) , (0,0,-13) , (3,4,12) ,
(4:3312) ¥ (’4§§33‘12) F o=




the sget of

10. Conslder an xy-coordinate system and C
~ points belonging to the circle.

. (a) €= ((x,¥): x° +y° = 9)

(b) ¢

(e¢) ¢

((x,3): x° +y® = # = ((x,y): x4 uy?

M

((x,7): %% + y° = 5)

11, (a) x>0 and y >0 ‘
(b) The portion in Quadrants I and IV and the point
where the circle crosses the positive x-axis.
{c) x<0 and y <O

12. (a) x =45 or x=-435
(b) v
‘(¢) No. There is no real number y such that

b
i
s

16 + yg =9 1s true.
13. (a) z =4
(b) y=o0

’ (e¢) =x

(d) No. ‘or all real values of 1z ,{

or z = -l

(=5 or x = =5

) 3° + B + 2z > 25 so0 a1l polnts with
coordinates (3,5,z) are in the exterior '
of the circle,.

14, Let ¢ be the length of any chord not a dlameter.
Draw radii to its endpoints. Then 2r > ¢ ,
because the sum of the lengths of two sides of a
triangle is greater than the length of the third
side. But 2r 1s the length of the diaméter. Hence
the diameter 1is longer than any other chord.

Sy

-
W

Statements ) Reasons -

1. AB and CD contain |1. Definition of diameter
center P
FC ¥ 0D =

[P
Jii @

= TB 2. These segments are
radii and all radii of
the same circle are
congruent.

3. /APC ¥ /DPB 3. Vertical angles are

_ congruent.

-4, AAPC £ ADPB 4. S.A.S. Postulate

Ki i€ X BD 5. Definitlon\of con-
T

L

gruences for triangles

:ifAf | 7615 A

sl



; NV A )
18. V{I -2)° .+ (y - 3)° + (z + 1)° =
0@ 1s a .radius of the sphere.

ERIC

Aruitoxt provided by Eic:

the center. It follows that

L}
A quadrilateral 1s a rectangl

K ;i?!! The diameters of a elrcle are congruent and contain

they bisect eachrother.
e 1f the diagonals

bisect each other and are congruent.

By hypothesis,

are
—

PC

and

We w

Statements

Reasons

PA and PB
radil of eircle P and
1s the midray of /APB

2B at D .
FD

intersects

ant to prove that

lies in the perpendlcular
bisector of AB.

— A, oo

FE = FB 1.

—

2. A BPA

3. /APDZ

4, PD°| AB and PD
bisects AB so
FD iies in the

. perpendicular bi-

sector of AB .

Radil of the same circle
are congruent.
Definition of 1sosceles

triangle

"Definlitlon of bilsector

In an 1sosceles trilangle
the bisector of the vertex
angle 1s perpendicular to
the opposite side and
bisects it, —

2 2 ]
(x =2)" + (y -3)" + (2 +1)
or
2 o .
xT = bx + 4+ y= - By +

L) s

3 . - -
x© + ¥y +2° - bx - by + 2z =

are equations of the required

a2

KU

oQ

s}
=

it
—
N3]
L
[

+
W]
[
+
I

il
]
%2l

s
=

sphere.
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Problem Set 12-2a

7

If a=23, then y = +% and the intersection of C
and M is ((3,4) , (3,-4)]
= 4, then y = 0 and the intersection is [(4,0)].

)
5 , the intersection 1s the empty set since

Ir

w
L]

If a
there 1s no real value of y for which 25 + yg = 16,

(a) 2 (p) 1 (¢) O.
A circle and a line 1n the plane of the circle may
have 2 points in common, 1 point in common, or

no polnts in common.

Problem Set 12-2b

Problem 22 is exploratory and leads toward Theorem
12-6.
(a) oOn L (e) On
(p) Exterior (f) Exterior
(¢) Exterior (g) 1Interior
(d) 1Interior
(a) r =43%
(b) The points whose coordinates are most easily
determined are those symmetrical to (3,5) with
# reapect to elther axls or the origin. These
have coordinates (3,-5) , (-3,5) , (-3,-5) .
The points of intersectlon of the circle and
the axes have coordinates (0, 43%) , (0, - 4/3F),
W/3%,0) , (- ¥/3W,0) .
{c) .0Obvious ones are those along the axes and such
that their distances from the origin 1s lesa
than /3% . )
Any (x,vy) sueh that x% yE < 3%,
(d) Any (x,y) such that x° + y° > V3T

I?EB{;}



(b) 12-4
&(c)' 12-4-4 12-4.2
(d) 12-4-3 (h) 12-5
L, 8 wunits
5. 2.5 units
8¢y2 #
Let x = %PQ

Y

Then, since PQ | AB , G %2 % 36 =247 .
PQ = L¢3 .

8. (a)
(b)
(c)
(d)
(e)

9. 18

N
H
+
w
el
B
™
I
o
~\+

“(f) A
(g) -
(h) o
(1) c
(J) D

g 031 ok

10. S8ince a tangent to a cirele is perpendicular to the
radius, and thus to the diameter, drawn to the point
of contact, the two tangents ‘ ’
the‘same line and are, therefore, parallel.

=
=

(a) If a diameter is perpendicular to a non~diameter
chord, 1t bizects the cherd.

If dlameter 7AB 1s perpendicular to chord GCD

and 1f 0 1a the center of the cirele, then

“ OAOCE Z AODE by the HyﬁétenusééLeg Theorem,

Then CE = ED .

(b) If a diameter bisects a non-diameter chord, 1t
is perpendicular to the chord. .
If in a circle with center O dlameter AB .
bisects chord CD (not a diameter) at E ,
then AOCE = AODE by S.S.S. and /CEO and
/OED are a linear palr and congruent.
Therefore AB | TD .

704
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12. Consider OR where O 1s the common center.
Then OR | AB since AB 1s tangent to the smaller
circle. It follows by applying Corollary 12-4-2 to
* the larger circle, since OR 1s a line contalning
the center and perpendicular to chord AB , that

“OR” bisects AB

13. Examples of 3 circles each tangent to the other two.

et Ag be the common tangent. Then in both cases,
T | A and QT 1 £  because every line tangent to
a circle is perpendicular to the radius drawn to the
point of contact. 8ince %here exists only one
perpendicular to a line at any given point on the
line, then PT and QT are the same line; and,
therefore, P , AQ ; and~ T are collinear. Of
course, the circles are coplanar, since they are

b, L

T
hjul

tangent circles.

A

ERIC

Aruitoxt provided by Eic:
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ERIC

Aruitoxt provided by Eic:

i
W

[
\m,

AC

]
et
=
It
™
+
-
[

]

-

[]

o

sl

BR—B;CP37;
AQ = 11

]

A, B, C are coplanar
and hence, by the
Betweenness-Distance
Theorem,

AF + PC = AC

AQ + QB = AB

CR + RB = CB

The segment-jolning the midpoint of eath chord t@‘the
center of the gilven circle 1s perpendicular to the
chord and thus the length Qf this segment 1s the
Since the chords are congruent, all these distances
are equal. By definition of a circle, all these
midpoints at the constant distance from the center

of the given circle lie on the cirgleﬁnaving that
polnt as center and having a radius equal to that
constant distance. This clrcle 18, then, concentric
with the original circle. Since the midpoints will
be the outer endpoints of the radii of the new circle
and since the chords are perpendicular to the radli
at these midpoints, the chords are tangent to the new

v

clrcle,.

(a) éf'r)g

i
——
ot
3
et

[l
=
o

AT

(b) Area of AAPT = 96 ;
Since PT 1s the
perpendicular
bisector of AB ,

L. oo . (kap
5 * 20 (5AB)

96

AB = 19.2

i

i



18. ___Statements = Reasons

1. 50T | *ac” | 1. Hypothesis
iEEE ls tangent at C .

2. /A= /BOD 2. Corresponding angles

of parallel lines

3. oc OA = OB 3. Definition of circle

L. /A = /aco 4. Base angles of an

1sosceles triangle

g n

are c@ngruenﬁ%
= /cop 5. Alternate’ interior
angles of parallel

5. /ACO

lines
6. /coD = /BOD 6. Transitive property
of congruence

P4
|

OL 7. Reflexive property
of congruence
8. AOCD = AOBD 8. S.A.S. Postulate
9. /ocb = /0OBD 9. Definition of
: congruence
104 A tangent i1s perpen-
dicular to a radius

10.

3
%ﬁ
o
I
8

<3t 1ts outer end.
11. m /oBD = 90 11. Congruent angles -
have the same
measure,

5 | BD at B 12. Definition of

' perpendicular lines

—
[k
fe] I‘
(u}

13. *PB” is tangent to 13. Any line in the same
cirele C at B plane perpendicular

to a radius at its

to the circle.

(a) or -10
(b) m__ =1, therefore m_ = -1

H
5
V;U
0
o
(@]




20.

T
i

el

(b)
(c)

(a)

(a)
(b)
(c)
(d)

Yes

Yes. Center 1s at -2) , radius =

5

The following equations are equilvalent.

(x - l)E + (y + 2)? = 25

3

(x= - 2x + 1) + (yg + by + 4) = 25
XE - 2x + yg + b4y = 20
L)

x5+ y2 - 2x + by

i
)
O

The last equation can be tranaformed into the

first by completing squares.

slope of tangent at (5,1) is =i

Equation of tangent: g ;,% =

or

A

bx + 3y = 23

[(3&3722 X = -1)

((x,7): ¥y = -x =42 or ((x,y): x+y +43

Equ/(-VE.+1)2+( v’;)
:1/(;2_+_1)E N

Ve

2 _

ﬂ
.H.
W T
]

)

‘Slope of radius to (5,1) 1s % . Therefore,

0}

N 18 parallel to the xy-plane and perpendicular to

the z-axis.

(b)

- 2
[(x:ng); x + yE + Zg = 25 ,

)

D]
=
il

=]

((x,¥,2): x° + 3% =9, z = 4}

1]

Thus, SN 1is a circle in the plane

Z

SM N means the intersection of §

= 4)

N ¥ with

1ts center on the z-axis with 3 as thé\ length
i

of its radius.

_ "‘l
SMN {((x,y,2): x° + v =0, z = 5)
is a single point (0,0,5)

\4

le)

el
-
);‘ Ll

)
-
b

which



Jiu]

() SNAN = {(x,y,2): x° + y° + 49 = 25 , z =7}
= ((x,y,2): x° 4 y° = -2h , 2 = 7)

#
which is the empty set.
(d) It appears that a sphere and a plane have no
point in common, one point in common, or a
¢ircle in common, i1f the distance from the
center of the sphere to the plane 1s less than,
equal to, or greater than the radius of the
sphere, respectively.
\ Problem Set 12-3
1. Mor" |8
“o” [*RT"
2. 16
3. X =14
DQ and OF are perpen-
dicular to the planes of the
. circlel. Since 0Q bisects

every chord of the circle
that passes through § , it
must be the center.
Similarly R 18 the center
of 1ts clrclg. Therefore,
o2 | @8 and OF | FB .

OA = OB by definition of a
sphere and 0Q = QP by
hypothesis. Thgn, b& the.

Pythagorean Theorem (or Hyp-Leg), QA = PB . There-

fore, cirecle Q = circle P by definition of

congruent Qiréies,

709
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ERIC

Aruitoxt provided by Eic:
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ERIC

Aruitoxt provided by Eic:

One statement: 1If a plane 1s tangent to a sphere,
then 1t 1s perpendicular to a radius at its outer end.
Proof: From Case 2 of Theorem 12-6, if a plane 1s
tangent to a sphere (which 1s the hypothesis in our
statement), then the foot of the perpendicular from
the center of the circle to the plane lies in the
sphere. Thls means that this perpendicular is a
radius with the foot as 1ts outer end, which is the

conclusion of our statement.

Converse statement: If a plane is perpendicular to
a radius of a sphere at its outer end, then it 1s

tangent to the sphere.

Proof: From Case 2 of Theorem 12-6, if-the foot of
the perpendicular from the center of aNSPhere to a
plane 13 on the sphere, then the plane 1s tangent to
the sphere. The hypothesls tells us that the foot
of the perpendicular is the outer end of the radius,
which, by definition of ocuter end, is on the sphere.
The conclusion of our statement follows from
Theorem 12-6,

et O be the center of Spheré 5 and P, and P,

(-
I

be two planes each contaiﬁing' 0. Let C and C

be the great circles of S determined by Fl and
reapectively. Then the intersection of Pl and
is a line which contains 0O . This 1line has two

ints, say A and B, 1n common with & , But all

b
o

o B« B < I
LAV (N ]

“points common to P, and S 1ie in C, and all
points commcn to ,PE and S 1lile in GE 80 all
points common to " AB' (which 1s the intersection of

P) and P,) and S must lle in both C, and C,
and hence 1in thelir intersection, A and B are these
points and, since AB 4is the diameter of S , two
great circles intersect at the endpoints of a
diameter of the sphere.

(a) Center is (0,0,0) ; radius = 3

() {((x,y,2): ¥
two planes,
(Ci) [(X;y,z); x

]
W

3) or ((x,y,2): y = -3] ;

£
il
i
L
—

3) ‘and ((x,¥,2) ;

710
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ERIC

Aruitoxt provided by Eic:

(a) The empty set in each case.

(b) All polnts 1in the interior of a cube the faces
of which are tangent to the sphere S and
perpendicular to the axes.

(c) The intersection of S and T is all of S
except the points (4,0,0) , (-4,0,0), (0,4,0) ,
(0,-%,0) , (0,0,4) , (0,0,-4) .

The plane of the pérpendicular great circle 1s the

plane perpendicular to the line of intersectlion of

the planes of the given two, at the center of the

sphere. There 1s only one such plane. (Through a

glven point there passes one and only one plane

perpendicular to a given line.)

Any two meridians have the equator as their common

perpendleular.

AF = BF since they are radil of the circle of inter-

section. OF = AF by hypothesis. Also OF | AF ,

OF | BF and AF | BF . Hence, AAFB = AAFO = AFFO

by S.A.3. and AAQOB 1is equilateral. Therefore

AO =5, m /AOB = 60 , and OG , the altitude of

AADB , equals %1/3 .

Call the three points A, B, C . To find the center
of the circle 1n the plane of ABC consider the
perpéndicular bisectors in the plane of ABC of any
two of the three segments AB , B and AC . The

bisectors intersect at a'pﬂfgﬁféquidistant trom A,
B, C which 138 the center Q% of a eirele through
those three points. Each of the segments @A , QB ,
QC , 18 a radius of the cirele, ' If a perpendicular
be drawn to the plane of ABC at Q , it will meet
the shpere 1in two points, X and Y . The midpoint
P of XY 18 the center of the sphere and each of
the segments, PA , PB, PC ; 1s a radius of the

sphere. : i



e
M

13.

14,

4

IR 1

By Theorem 12-6 wé;knmwjthat plane F 1intersects §
in a circle. The interdection of the planes E and

"F ,1s a line. Since both intersections contain T ,

the circle and the 11nefint3fsegt at T ., JIf they
are not tangent at T ;fthen they would intersect in
some other point, R, é;sgi Point R would then lie
in plane E and in sﬁﬁeré 53 . This is impossible,
since E and S are tangent at T . Hence, the
¢lircle and the line are tangent, by definition of a
tangent to a .circle. ) ‘

10} or (0,0,10) .

N R
(a) [(x,y,2): x“"+y“ =0, 2z

(0) SN P = ((x,y,2): x° +y% =36, z=8)

s

That 18, x and ¥y must satisfy the equation
x° + y° = 36 which, in the plane P , is the
equatlon of a 21?31ei“'NQte, however, that
((x,y,2): x° + yg = 36} 1s not a cirele, but
a rlght circular cylinder. ’
S B .
(a) x° - Lx + 4 + ya +6y#+9=23+4 +g
- 2 A2
(x'- 2)" + (y + 3)° = 36
Center is (2,-3) , radius is 6
)

(b) S = ((x,y,2): (x - 2)° + (y + 3

Problem Set 12-la

(a) (1) /apD, fCPB, fCPD , /BPD , /CPA
(2) 180
(3) AD, aC , CB, BD , CED
(ty DAC , DAB , ACD , CBA , BDC
5) AD X DB

P Ll L
(6) Semilcircles ACB and ADB are not

assoclated with central angles.
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(b)- (1) 11 s
. (2) /MAB , inscribed in WA

o

intercepts MB

:

LNIAD , 1l

z) E)
3

Q
>
o
2
]

=
[wr]
5 B

. /MAC , "
/CAB , " "
/CAD , " "
/DAB , " "
/ABC , " "
/ADC , " "
/BCA , " " BCA , " BA
/ICB , " " BeB " DB

198989
)

L /DCA " " DCA ,‘ "o DA
. (3) /ABC and /ADC . The degree measure of
& each 18 90 since they are inscribed in

a semicircle,

| 7 o | (¢) (1) /A 1intercepts

b
. 5 : ZB n E‘T‘j
i

LC it

/Lo BA

™

L
=

>
i
2
iy

=
®
u I
]
o

=
'S
i

= U 7%‘_”% N u

N om /D=7 T

=

(3) /AZ/B, /02 /D
Angles having equal measures are congruent.
Angles inscribed in the same arc are

congruent.




Tangent Tangent
and and

Tangent - Secant

]
L2

secants)

(Two secants)

B
= . A J
P ,
' )

. - 3. The center of an arc 1s the Intefsection of the
perpendicular bisectors of two or more chords of
g _ ' - the arc (Cor. 12-4-3). 7




Since the inscribed a.ﬁgle 15! measured by half the are
which it interéepts, AB must measure 90° . The
measure of a central angle 1s the measure of its
:Lntercepted a.rc, 80 m /P = 90 and EF _LKF
(a) m éA =m AE by Cgral}ﬁry 12-7- 2.
m /AHK = m /BHF - Emce the intercepted arcs have
equal measure. ThET‘ETQI‘E AAHK ~ ABHF by a
triangle similarity Eiearem (A.A.).

(b) ABFK ,-since

& E ’ \
m/BFA = 5 m fiB = 3 n BF = m /BHF
and /HEF 1s common to the triangles.
m ST = 80
— "ot
m RV = 150 ,
m /T = 95

1]
D)
o

m é]
m /8 = 120

If quadrilateral ABCD 15 inaciibed in circle ' 0 ,
then by Theorem 12-7

m /G
m /A

Since the union of a major
arc and its minor arc (or
of two semlcircles) has, a
degree measure of 360 .

= .
m BAD and

]
I M H

% m DCB .

BAD + = 360 .,

+ m DCB

#m BAD + 5 m DCB = 180 by the multiplication

L=

property of equality. Hence, ./BAD and /ICB
are supplementary. ‘ '

i

)y ) . .
. =Y ) !



. 8. Consider RO . We know A0 1s a dlameter of the
smaller circle and therefore that m /ARO = 90 by
Corollary 12-7-1. Then AB 1is bisected by the '
smaller circle at point R by Corollary 12-4-3,
The circlea are coplanar since they are tangent.

9. AACB 18 a right triangle with the right angle at C
by Corecllary 12-7-1. 1In a right triangle the
' altitude from the right angle to the hypotenuse
divides the triangle into two triangles, AACD and
ACBD , which are gimllar both to each ather and to
the original triangle. Therafore )
- %% = %% or iCDE
10. BY Theorem 12-7, m /A = % m
m BDC = 180 and BDC 1s a
of a\?sémie,ifclef’.

i
>
=
g

BDC . Since m /A = 90,
icircle, by definition

11. ¢ In the circle AC™ bisects
/DAB 80, by definition of
angle bisector,

Therefore m
the multipllcation and sub-
stitution ﬁ*aper—ties of
equality. -

o

12. Consider radii PA% and PE . Since diameter
Ch | AB , then AM =-BM by Corollary 12-4-2.
AAPM = ABPM- by S.5.S. (or S.A.S. or Hypotenuse-Leg),
so that . m /APC = m /BPC . Then, m /APD'=m /BPD
E;nce they are supplem&nts of c:ongruent angles,
Ther‘efare, m AC =1 BG and ru AD = m BD s by the
definitlcn of measure of an ar‘c: ‘and the subatitutlan
property of equality. Hence TD bisects ACB and
ADE . | :

2

|3

716 .




Ty hypothesis
mAD =m DB and AE = EB .
Lonsider AADB .

13,

m/B=%mAD and

m /A %m DB by Theorem

m /A
by the multiplication and .

substitutlon properties of equality. Thus, AADB

is isosceles and " DE , which bisects base AB , is

also perpendicular to AB . But, since C 1s equi-

distant from .A and B, it-‘is in the perpendicular

bisector of AB -and hence in .DE . ,

12-7. Then m /B

14, By definition, ABAC is isosceles since &B = IC ;
. therefore, /B ;/KC . .
m /B = % m AC und

m/C = % m AB by Theorem 12-7.
Hence, m AC ='m AB by the substitution and
multiplication properties of equality.
15. ) A Let an xy-coordinate systém
’ . assign (0,0) to the center
of the c¢irele., Then, 1f r
. 1s the. radius, the extremi-
ties .of a dlameter would be
(r,0) and (-r,0) , r >0 .
-—tde 1 000N o Call these points A and B
Bt 0) lé Alr;0) respectively. Let P(x,y) -

P(x,y)

be any polnt of the cirecle
except A or B. Then the slope of PA = §%§? and the

slope of PB = ;%—1: . The product of these slopes is
2 - L
T% . But for all points P , ;{E +Jy2 = r-g or

2 2 .2
.

e}

yE = p° - ;;E, . Thus ——i—mn
- X" -r x“ -r

It followshthat PB | PK and /BPA 1s a right angle.

j




ot

16. m.éc+m£m=%mg¥%mﬁ g(m’gE+mYCE)
= 180 . ’ ‘
Therefore /C 1s the supplement of . [EXY But
L’AX! is the supplement of Lm and, since
supplements of the Bame angle are congruent,
/AXY = /C . 1In the manner used above, /D may be
shown to be the_supplement of /AXY ang therefore
he supplement 3 /C . Since /C and LE are
consecutive interlor angles of Vol and “86" with

transversal " DC , it.follows.that AD || BT .

17. (a) Since /ACB 1s a right angle by Corollary 12-7-1
and /DEB 1is a right angle by definition of
perpendicular 1ines, /C = /DEB . Also, by the
reflexive property of congruence, /B < /B .

Thus ABCA##®AEBED is a similarity by A.A.

(b) (BC,CA, AB) - (BE,ED,DB)

(¢) since (BC;EA) 5 (B‘E,ED), by the product
property of proportion BD + BC = BA + EE .,
18. since AC and BD are tangent at the endpoints of
a diameter, AC || BD . Also AC and TBD are
. segments of chords of the larger circle which are
congruent by Theorem 12-5, Ea’*t?t:rcllgrjr 12-4-2
, X the radi; OA and OB Dblsect these chords, so that
‘..o EEX . Therefore quaj;ilateml ADBC 18 a.-
.y ' parallel@gram by the theorem which says that, if two
'  sides of a quadrilateral are congruent and parallel,
the quadrilateral is a parallelogram, Th’ef diagonals
4 . of a parallelogram bisect each other, -so AB and
CD bisect each other at some point, P . Point O
is the midpoint of .AB , so P=0, and C, 0, D
are collinear, making CD a diameter,




¥

. " Problem Set 12-4b

; : 4
Problems 12, 13 and 14 help prepare for Theorems
15 and 16
1. (a) (1) 1inscribed angle
(2) tangent-chord angle
(3) secant-secant angle
(4) tangent-secant angle
(5) tangent-tangent angle
(®) (1) 75 (8] 3w
(2) 110 (5) 6o
(3) 30 (6) u2
2. (a) 35 ; (r) 90
(b) 55 (&) 213,
(c) 625 (h) 35
(a) 123 (1) 125
(e) 223 () s

In the congruent circles P and P'. we are given
that m AB =m A'B' . It follows that thelr
respective central angles P and P! are of equal
measure. Thus AAPB & AA'P'B' by S.A.S. and’

AB = ATBT by definition of congruence.

250 ’
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4, (a) m FBA = m BAH berheérem 12-8,
ijﬂ_ﬁ+m§§A'=mrF’{§A‘yand mAH + m BA = m"BAR
by Postulate 30, Then m FB = m iR by the
addition property and the substitution property

of equality. Hence FB 2 AH .

(b) From (a) we conclude that
FB = AH by Theorem 12-9, .
/[FBH ¥ /HAF and /AFB ¥ /AHB by Theorem 12-7,
Then ;SB%F = AAMH by A.S.A.
5. ABCD 1s a square and °
- DA 2 AB 2 BC and therefore
‘DA X AB . Theorem 12-8.
Then m /DEA = m /AEB = m /BEC siﬁéé%ggey are
inscribed angles and are equal to one-half the
‘meafures of the congruent &rcs which they intercept.

/DEC has then been trisected.

6. (a) /BAC | (£). /aDC | :
o) Loar . (8) /DcA , /pea

() /ADB , /BAF-. (h) /DAF

(d;\%\F\ (1) fEsB

(e) /pcB (5) /oBc .
7. Since m PB = 120 , m /BPC = 60 by Theorem 12-10.

[P

2 &

e

| OF, bo m /BPQ = 30 . AAPQ 18 a ' 30°-60°
right "trishgle. Since PQ = 6 , then AP = 4 ¢/3 ,

8, ' Considér the common tangent at H . Then an angle
formgd by the tangent at H and line u 1is ‘
measured by the same arc as an angle formed by
line 4 and the tangent M or N . It foillows
that the tangents at M and N are parallel, by
corresponding angles in one case and alternate

interior angles in the other case.
?

S gt

‘{" }

-
720

o



4
9. Consider ¥E ., ByaThgprem 12 -7, mLZEPR = §sm R .
' BY Theorem 12-10, m /BPT = -g m PB . But '
J m =jm PB, 8o m ./BPR = m /BPT , TEF " and
» EE_l by the definition of distance fram a point
to a 11ne- FB = PB B0 APBE £ APEF by A.S.A.
(or A.A.8.). Therefore, by definitdon of congruence,

BE = BF ,
10. Case I: CQﬁaider the diameter from P . Since the
’ diameter is perpendicular to the tangent,

it is perpendieular to ?EEE; Therefore 1t

bisects AB and AB and m AP = m BP .
Case II: Caﬁsider the diameter perpendicular ta the

secants., This diameter will bisect CPD

and APBE . Thus m AP = m BB - and

mCP =mDP . Then by,betweenness for arcs

and the properties of'equaiity m AG = m BD

Case III: The diaméter from P wlll have Q as its
other endpoint., Then the two arcs are
semicircles and have equal measures, byl
definition of the degree measure of a
semleircle.

Alternate proofs involve radii to form congruent
trlangles, or chords which are transversals and

using alternate interior angles.
2

*11. (a) (A,B) = ((x,y): 2 +y2 2025,y =3 -
= ((x,¥): x° =16 , y = 3) = ((4,3),(-4,3)).
(b) (,D) = ((x,¥): x* +y® =25 , x = 0}
. = {(0,5),(0,-5)})
() QA < @B =1[0-1)2 + (3-3)2. 1/(Q+4)E + (3-3)2
=4 . 4=16. s
s QC - QD 21/(0 0‘E + (3- 5) 1/(050)? + (3+5)9

. 2+ 8 =16 . \

‘n\‘
¥l
i




*12. E(a) (A,B} = fz;,y)é x2 ;,yg, 25 , y =

L = U(8,3),(-4,3))..
(6) (C,D} = ((3§): 2 +y2 =25, y = x -~ 5)
= (k) x° + (x-5)% =25, y=x-5)

): 2x% - 10x + 25 =25 , ¥y = x - 5).

I .
[
S

il
i

= ((x)
= ((x,y): x(2x - 10) =0, y =x - 5]}
= ((9:55);(5;G)] .

(c) PA - PB =A8-4)2 + (3-3)2. 1/‘(;&5)2*(3‘3)2

=4 . 12 = 48,

pc - B0 =(8-0)2 + (3+5)2. 4/(8-5)% + (3-0)%
. gvﬁ!yﬁ;ﬁg,g_g.égua’i

l ;
+#13. (a) AADB ~ ACDA because /B ¥ /CAD and /D & /D .

(b) Corresponding sides of similar triangles are
proportional. .

6k° '

. 6K°

S

]

(¢) AD = 6k ,. BD = k(6k)

(d) AD - AD = (6k)(6k)
ED - CD = (6k°)(6)
Therefore E(AD)E BD - CD .

. Relation is true for k >0 and CD » 0. If
k= O, then A=D=2C and (AD)® = BDCD 1is
true. If k < 0, then 1t is impossible to have
AD = k-CD..

]
[

>

Il

Problem Set 12-5

1. (a) 2, lengths, bisector, angle T

(b) in(on), in or on,
A 1is between R and 3 .

(e¢) 12, 12

ey - .




2, -(575 (1) tangent-segments

(2) 10 , Theorem 12-13: The two tangent-

: segmeﬁts to a clrcle frcﬁ an external point
are congruent.

(3) 45 ; The last part¥f Theorem 12-13 says
that the two tangent-segments from an
external point form congruent angles with
the line Joining the externa% point to the

( center of the circle. ’

(b) (1) RX .
(2) RD \3;
(3) RC \
(4) RC + CD = RD by the Betweenness-Distance
Theorem.
(5) Yes, since 122 = 8(10 + 8) .
6(18 + 6) .

Other pairs of factors of 144 are the
easlest to consider. RC * RD could be
. 9 .16 , 4 + 36, 3 . 48, etc., as far as
the products are concerned. However, since
;f CD 1s’"less than or équal to the diameter
of the circle, restrictions must be made
. With reference to any glven cirele.

#

(6) Yes, since 122

(¢) (1) a(a+b)=x" (x+y)

Theorem 12-14: The product of the length
& of a secant-segment from a given point and

the length of 1ts external segment 1is

constant for any sééant'eontainingﬁthe

external point. A\

::Y

(2) vYes, since 3(3 + 17) = 4(b4 + il) -

i
w7

3. (a) When it contains the center of the ciwcle.
(b) When the secant contains the center of the
cirele. i

(c) decrease, increase, tangent-segmentys the
tangent-segment. )

(d) Q,Al“ . Q,A"

&




Y

. ____Statements __Reasons

1. gﬁk,gﬁﬁb and “ER" 1. Hypothesis
are tangents at '
B,D and F
respectively,

2. CB=CD ' 2. Theorem 12-13
. EF = ED C . !
‘!’ 3. CB+ EF = CD '+ DE 3. Addition property
. . of equality
4, CD + DE = CE ) 4, sBetweenness-Distance
' - Theorem

5. CB + EF = CE 5. The substitution

’ . property of equality -

5. (a) 20x =6 .22 () PB* PA=PD* PC
x = 6.6 16 - 7=x - 8
DA = 6,6 ” x = 14

PD = 14

(b) x° = AR - AM
=16 . 4
X = 8
Q. AT = 8
6. 6(14) T(x + 7)
iz x+ 7 \
2o .
BA =5 ! /

7. x(x +13) =14 . 12 )
x° + 13x - 48 =0

x =3

m;,

8. Let K = Then by Theorém 12-15,

"a(a + 5) = 36
a® + 5a - 36 = 0 !
(a +9)(a - U4) =0
a =14

4

BK = |




9.

1Qi
=

lli

12,’

13.

1hi

By Thedrem 12-16, we havé i L
x(19 - x) =6+ 8 ,
X2 -19x + 18 =0 . .
, (x - 3)(x - 16) = 0
x=3

. W=19 - x = 16

Let r be the radius. Then, by.
Theorem. iE—lE,

(r +8)(r-8)=6-6
7?64336; r =10

Let the radlus of the circle be r .,
Theorem 12- 15,

M ]

Yfar + 4) = 12
Hence , r =16
Since all angles of the triangle have measure 60 ,
the minor arc has measure 120 . This leaveas 240
for the measure of the major arc.

(a) PFour; two internal, two external
(b) One internal, two external
(¢) Two external only .
(d) One external only
(e) None
Since tangents to a circle from an external point
are congruent,
! SN = SP
{ NR = RM
. (EGL = CP

DL = DM
By the additio n prapérty of equality and the aa;cci-
ative property of numbers,

/(SN + NR) + (CL + DL) = (SP + CP) + (RM + DM)

T‘E?i! W] , %"-




s

15.

16.

17.

18.

'RM + DM = RD .’

By thé‘gatweennessaDistanee Theorem,

SN +NR=SR, CL+DL=CD, S8P+CP=SC,

It follows from the substitution
property aflféuality that SR+ CD = 8 + RD .

Statements __Reasons

1. Hypothesig, L.

1. 98" and'qﬁf?‘are -
—+fangent at A and .
C , respectively.

2. AAOB and ACOB are |2..
. right triangles.
3. m /ABO =m /CBO = 60 |3.

Corollary 12-4-1

m /ABC = 120 , and
Theorem 12-13 _
OB ' 4, 30-60 right triangle
D theorem

4, AB =

o]
i
(v [ T

OB

5. AB +CB = OB 5. Addition property

of equality

‘Draw QR | AF,. In APQR , RQ ,-;31/(5(;)'5! igﬁjé .

But AB = RQ , since RQBA 1s a

A.E'g 1’.‘8 . ’ ] .

Hence RQ = 48 ..
rgctangléi Therefore,
As 1n the prevféus problem, draw a perpendicular .-from
the center of the smaller circle to a radius of the
By the Pythagorean Theorem, the

39 1inches,

larger circle,
distance between the centers is
(a) PA” and PA" are both the midray for /CPB , by
Theorem 12-13. Since each angle has one and -
only one midray, PA = PAT .

——

m B'C!' =130 . One possible Ealhticn follows.
AC and RATCT are, by Corollary 12-4-1, both
serpendicular to PC and AB and ATBT are
both perpendicular to PB . Consider quadri-
laterals ACPE and A'C'PB! The sum .of the
iméasures of the interior angles in each equals .
360, m /ACP = m /A'C'P = m /ABP = m /A'B'P = 90.

L8

(b)




By applying the addigian property and Eubstitutian
property of equality, m /CAB + m /P = 180 and
m/C'A'B' + m /P = 180 . Then m /CAB = m /crarpr
since these angd# are supplements af the sgme
‘angle. But mB = m /CAB and m C'E‘ = m /C'A'B! \x
by definition of degree _measure of.a minor ara..
Therefore ' m 5‘—5‘: =m€D = 130 by the subatitu-
tion prcpgrty of equality.

el

19. If m 18 the length of the shortest of the four’
‘ segments, the rest of its chord’ would have to be the
longest of the segments. cherwise the product of
the segments of this eh@rd would certainly be leas
than the product of the segments of the ather Hence,
if 1t were possible to have ‘consedutive integers for

the - lengths they would be labeled as shown. But in
thls .case, by Theorem 12-16 it wauld be necessary

that |
mm +3) = (m + 1)(m + 2) :
‘or " m® +3m = m° + 3m + 2 7
) or 0 =2

! = Since this is impossible, the lengths af the ségménté
cannot be consecutive. integéfs )

((x,3): v = 5 s X - ¥y = 12)

an5)) s p=(7,5) . _ :
((x3): (x - 1)%+ (v +3)2 2 6h, y = 51~
((x,y): (x - 1)2‘+ 82
((xy): (x-1)2 =0, y=
((1,5)) ; 7= (1,5)

il

20. (a) (P}

o

M

(b) {T)

1]
o
=
Ll
~

[i}
(%]
Nt

it
i1
Mgt

.
I

(3




‘ (e) (R,SY = ((x,3): (x.- 1F + (v +3)%2 64,7 =
. x - v = 12) E ) 7
= f(:ﬁ;yh (x - 1)% + [(x - 12) + 312 = 64,
L = lxy): X - ex 414 %2 - 18x + 81 = 64,
’ * y=x-12) - |
L - L 52{-‘(;3&)= 2x° - 20x + 18 =0 ,.y = x - 12]
- s "= [(x,y)z’ {x - 9{:-_-!1)‘1_—:’0 , ¥ o= x¥- iE]
) - [?9,%3),‘@ 21)) o '
'(d} pr = /(a7 - 12+ (5 59)2 =16 ; pr? = 256,
“(e) Let R = (9,h5), 7= €1;-11) ; ’
Thep - PR =1,W/(\1'?' - 9)2 4 (5 + 3)2 =1/128 ,
land PS =4/ '!1)'z+(5+11)E =1/512 .
PR - PS 21/128 /512 =416 - 8 . 16 - 16 % 2
. "= 256 p T e |

(f) Theorem 12- -15 asserted the Equalit:y here
verified. oL ) -~

21. Consider rgdi»i RE and QB . Let AB intersect
R at P. m/A=m/B=90, and m /APR = in /BPQ
by vertical angles.. Therefore, AAPR ~ ABPQ by

A.A. This gives %% % Now suppose BC meets

»

[]

R§ at point P' . Then, by a similar argument
RP! RA RP! "_ RP -

we ai:r’-rive} at QT < 0B ¢ Hence QFT ~ 3F ¢ and P .

and P! are both between R and Q . Therefore,

P' =P . '

A direct method could show that the point of inter- _

section of AB and CD , along with R , determines

. . _the perpendicular bisector of &G . It can:then be
/7 shown that Q 1ies on this bisector.




'22) Let d be the I‘eéﬁif‘ed distance. By Theorem 18-15,
. N | 7
a* = m7g5(8000 + wgs)

Now since h 1s very small compared to 5280 ,

. a
I

v'(i;l}ﬁ)e 1s exceedingly small, and is not significant.
So Eppr‘aﬂmaﬁely, d gm - 1231/? o .
Hence d 1s roughly % VE . S

e

729 o~
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Problem Set 12-6,—< . .

4 _ ‘ - - '-ii . -’\

_— _ o - :f e ’
_1e closer, : ;gg ) )

*

s

-
~In

. 22 = 3,1429- BN
T = 3.1416 (eccufece to four decimal places)
. 3.1% = 3.1400 - . I

= L (d) ¢ =127a , d'= 12a

[yv]
w—
]
Wnget
[N

"
ot
=
L)

9]

I

K3

36 18 (e) C = 2mxs
- 7.5 4= 23

-
o
Mt
a
'}
|

L]
H
L]

li
-
w o S
=
L]
"
"

c

) 3. (e) Ci =3 - GE . (g) Cl = 2

] (b) 4, =5 - d, . (d) ¢, =2+ ¢

4, (a) m BA (in cegreee) =m BIA (in degrees).
 (b) 1length of BA = 2 : length of ETKZ

. ) ; - )
- 5. (E) EEE-E,E% y
‘u L,
() 3 ‘

R = 480,000m . The circumference is
appr ximetely 1, 50@ 000 milee.

s
Q
"
[N ]
ﬂ
!

“lprin 1

7. THe formula glves;‘ \
6.28 % 93 - 10°
584 . 10°

il

2rr

, * 29
P . 19

which 4s 584 million miles (cypfcx;)a
Our. speed 1is about 67,000 miles per hour.
) . s F s
8. ¢ =27.; 628 ere ear ;T = 100 yd (dpprox.)
9. (a) fThe radius cf the circle - -
- (b) 0 . -
(E)E, 0 T .

(d) .The circumference of the circle \

¥

“




[ v ]
=
SR

LS e R e
w00 0o
n\ﬂ)\h—'

v [

[

Loyl

Wi

11. 2 units ; /3

12. Radius of the .inscribed circle is 6 , gk
clreumference 18 127 . The radius of the clrcum-
scribed circle is 642 , 'so its circumfepence 1s

, 12my/2 . ' L .

13. The increase 1n circumference 18 271 in each case,

»

14, In the figure, side 4B
of a regular inscribed
/o : octagon is 1 unit long.
Since AADO- is a right .
isosceles triangle,

D@ = 71;!— L] -
7§— :

BD=1r - _I_ . In right

' ; ) .

triangle ABD ; (AD)? + (DB)? = (AB)? or

4 AD

( --Ei)E + (r - _3_)3 =1 , from whieh r =
15, The perimeter of PQRS 18 greater than the circum-
ference of the circle. AD ='2 and XW =472 .

Hence, PS g-%(? +4/2) . -
The perimeter of the square 1s f€E§+ 24/2) .
The circumference of the circle 1s 2w .
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Problem Set 12-7

- 2wr (c)
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= 71

, 2#(2.5)’
. 15.70 '

n‘g* )
(3.14)(6.25)
19.63 -
ry3 :
2(3.14)(1.732)
10.8 *

2

(3.14) (B)

95 A" .

27
147




10..

11.

oy

A = area of first. A" = .area of second.

(a) A - w?? - wm? . . ,*p

W

A =37 or approx. 9.4 .sd. em.

The circle is larger. S 7 )
e - 5° - S

1042 . , ' \

Lud
et
oo
I
v ]
(%]
]
]
120
o
oo
[
m‘
H
1]
[7Y
[n]
]
fu g
m
o
|
"1‘
1]
m\
(2
1]
H

It 1s only ﬁece§i§:§/%a find the square of the radius

of the circle, If~a radius is drawn to a vertex of

the cross, it 1s gseen to be:the hypotenuse of a right

triangle of sides 2 and 6 .. Thé!squafg of the
the Lo . The area of the

eilrele 1s therefore LOwr , 125.6 aﬁproximé%ely}

The required avea is therefore 125.6 - 80 = 45.6 .

e}
i)
=
[y
vl
i
=
7]
ot
g
]
H
L]
Iy
o]
=
1]
[in]
]
+
L2
[iv]
[}

Consider PB and PC . The ‘aréa of the arinulus is

2 e o , -
T(PC) - T(PE}E » the difference of the areas of the

. twc!circé§s.. This can also be written

T[(PC)2 - (EE)E] . By Pythagorean Theorem,
(pc)? - (PB)? = (BC)2 . Therefore, the area of the .

annulus 1is TT(EC)2 .

20

733

f



15. (a) Note that, r, = OA

- V \ " =
12, The section nearer the center of the sphé?é“wﬂl be
the larger, o , . - ! ‘
e « = >= ' 2 2 - = £
F Py o= 10 - 5§ P : :

2 .42 22 A

[l
=
o

1

3.

r

» Therefore, ry>r.

(r+g)+(h+8)=g+h+t.
r+s =t

]

"OR = BP and rg*a 0S =CP .

.. By successive use-of the Pythagorean Theorem
© we get ry=ryY2,r, =143, ry = ryF .
1 ! 3

EY

" (b) Now, using the area formula for a eircle,. we have

8 =

o

I




16. From the second figure,

42 _ 22 212, 80

the altitude of the
trgpezoid is 243 .
In the first’ figure,
since the bases are
parallel and tangent
to the cirecle, we see . 5 1
that FH (altitude of
the trapezoid) must be EK
a diameter; thus the
radius is 43 . The

i ) area of the circle 1s, .
then, 3r* The area
of the® trapezoild is
843 . The area outside ;
the circle is. (843 - 37) ~
square inches. Thils 1is

av]
LM
(]

approximately U4 square / CT M ¢
iriches.

B E - ¢
= »

. o , L
Problem Set 12-8

The length of/ CD 1s greater than the length of EF .
The arc of one inch on a half dollar.

1

2

3. Yéé, to both questions. > ~ ’
4 _

‘W

H
=]
z)
1]
H
=
L]
=

If migﬁ >m cD s, then r < ! :
5 67, 7.5, Br , 37
6. 97, w/10 , 67 , 5.47

13 =

-2
]
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o s}
E]

Hjw

. Chord = = or .96 cm,
10. 90" . -
11. (a) The intersection of S and P 18

s . sk o
{(x,7.,2): x° +!y2 =16 , z = 3} , a circle. in
Q%Fﬁé z=3, with (0,0,3) as

4 %.as radius.

center and

. ‘23; (b) The radius, ° ri s of the circle of intersection
" is L, iﬁélﬂad;us, r, of the great cilrele of 8§

- 185, If C,.and ¢ denote the circumferences q?
o . r 4
<i - these clrelee, therh Cg_ = "1%‘ C = %G .
‘ 7 - 7 * 3 42
{c) Area of circle of intersection = —w times the

5

area of the great cirecle,
(d) These arés will be -% of the circumferences
o= * 1in each case 8o the src of the circle of inter-
S ' section 1is %s of the arc of the great circle
. of S5 . ' '
12. . » 4 since y=x,m /BOA = L5

g




13. (a) Area of sector s%i- . 122 = 2uy

122 -
“—v3 =36¢3 R
s . Area of segment = 247 - 3643 or 13.04

(b) Area of sector = %qr . 6% = 127

Area of triangle s%—i" 61/3' 3=9¢3 AN

' ; ° Area of triangle

t

] o N Area of segment = 127 - 943 or 22.11
" (e) Area of sector = %F - 8% = 8r i i

%!5 chyZ = 162
8r - 16 /2 ::z; 2,51

, Area of triangle
- . Area of segment
1%, (a) low
. (b) =~ .
. 15. Draw BG | AT . Then GC = 6 , AG = 24 . 1In the
right AAGB , the length of the hypotenuse 1s twilce -
the length of one leg, so m /ABG = 30 , m /BAG = 60 ,
‘and CE = GB = 24 /3 , The major arc TD has the

i

length Z(2r + 30) = 40T and the minor arc EF has
' the length #(2r - 6) = br . Thus, the. total length
of khe belt 1s- 2(24 4/F) + HOw + b = 48 /T + Uby .
The belt 1s approximately 221  inches long. :

-~

16. 'To find one small shaded area,
subtract the area of a 90°
sector whose radius 1s 24% N 4
from the area of a square : g N
whose -alde 1s 242 . : an

(2 4%)% - X2

The area of the glven shaded region 1s 4(8 - 2m) .
This is approximately 6.87 square inches,




and 0O are on the.same ‘side of a diameter

- of rectaﬁgle ABCD as

Prablem Set 12-9

The ceenter of the circumscribed c%file abaut a g;ven

acute triarigle is In the interior; abaut a righﬁ :

triangle it is the midpoint of the hypatenuge, about_
an obtuse triangle it is in the exterior.of the )
triangle and in the interigfsaf the obtuse angle

Proof:* If £ is Q?%ignt angle /BCA intércepts

a aemicircle of whic B is a diameter.-sf

if Z? "is an obtuse angle /ECA intercepts a major
arc and hence is inscribed—In a minor arc. Then C
and O , the center, must be on opposite sides of
AB . . ..

If /C 1is an acute angle then it intercepts a minor)
arc and hence is @ﬁscribed in a major are. Then ¢
Yes. The mldray pf each' angle is in the interior of
its angle (except for the vertex of the angle), ’
Therefore, the intersection mist be in the interior
of each angle, hence“in the interior of the triangle.
The median 18 a radius of the circle and hence 1ts
lémgth 1s 12 . (f ' .

Let a eégrdinateysystem be

eatablished with véﬁtiées
C(a,b)

jw]
—
‘.‘F“
o
—
|

shown. .Let '0(x,y) be
the center of a circum-
scribing circle, Then
2 E _ 2

+ = (x - a) + y - |- :
(x - )2 + (y - )2 Ao . B(a,0)
x° + (y - b)? yielding

= % s ¥ = 'g . Thus §:§)

"

b

exists and a circle can be
circumscribed about a given
rectangle.



( and hence equilateral.
‘8., "If ABCD 1s the quadrilateral

. Then BD is the midray cf

- . . R Y . T e
Let I(x',y') be tié center of an iﬁsafibed-circléi
i; Then xV' = y! = a = X! =Db -y, yiélding a=b>h,

/ a:ncktjdemandin% that in order for &n. :Lﬁgcribed c;rcle

to exist, the rectangle must be a square

W

. Yes. The dlagonals are biaeetcrs of the angles.
Hencejﬁgﬁeir intersection 1s equally distant from
‘thé sides of the rhombus. No, unless the rhombus

: 13 also a aquare, )

r -
6. By Theorem 5-9 each angle biaectaf also bisects the

oppoaite aide and is perpendlcular to it. Therefdre
the angle bilsectors are concurrent in the same point
as the perpendicular bisectors.

7. Let O be the common cgn;ér;
-+ E, the mdpaint of EC . -

/ABE and T0" is the midray
of J/ACE -~ ABOE = ACOE by’
S.A.8. m /OEE =m /OCE , *
/ABE = /ACE . Thus, by ex-
terding the argument, we may
prove the triangle eguiangular

[

hed}cansiﬂer the circle
cim:mnscribir;g &EEG . ,

If D 1s not on the
oiréle, thefl m /D £ Z(m ABC)
and /D 1is not supplementary
to /B. Hence, if /B and
/D are supplementary angles,
‘then D 12 on the clrele through
A, B, C and the quadrilateral has
a clrcumscribed clrecle.

4



- . . ——

: . -¢ P é?ﬁ\pet a é%ordinate,system be
K B establfshed- with. erigin‘at .
. L fhb_the midpoint of a base of
'«~h*'- oo isosceles trapezoid. ABCD
R as shown. . . - . ~Dbbg)

? ',( VR V Let. P(O’Y) be gueh
: .. that PA = PB = PC = PD .

. . . 2 -9

. Then a” + y° = (-a)gff y2

2 2

= (-p)" + (y - ¢)

y 2 2 ‘
b + (y. - c)° , yielding 7
2. 2 2 ¢

b~ + ¢~ - a

y = S s(c # 0)
2 2 2

: b~ + ¢7 - a
Thus -F{0, —— == )

A(-a,0) Olo, - Bio,0)

exfsts ard consequently -a ~
circle can be circumscribed about a given isoscelés

trapezoid.

It 18 not true, however, that every isosceles

trapezoid has an inscribed circle,
<@

10. As the Iigure indicatés,
- (5x)°
' - 25x2

(ex + 2)é + (3x + 2)2

4x® + 8x + 4 + 9x° + 12x + 4

3x? - 5 - 2 = (3x + 1)(x - 2) =

)
2/

o - S X =2 ; 2
a— N
length of hypotenuse = 10 . 2x
“o 11. , (a) Midpoint of XY = (4,0) ; slope of X¥ 1s zero.

Perpenaicular bisector of XY = {(x,y): x = U4}
(b) Midpoint of Y = (3,3) ; slope of XT is F .

Perpendicular bisector of ¥ =

= Uxy): y - 3= - 2x - 2))

'= {(x,y): 3y +.5x = 17} o

ol

— o




-

[

(e)

(d)

(xy): x=4 , y=- 3+ 30} or

(4:‘1) -S:-ql ) Y
13 3

{c}
c

L

Midpoint of YZ = slope of YZ 1is
point of ¥ = (353) , slope of T2 is.

Perpendicular bisectqr of YZ

= ((x,¥): ¥y - % = 1(x - %))

= [(xigg:\y -x -5 . >

The coordinates of C(l4,-1) satdsfy this
equation. Therefore, the perpendicular

t]

_bigectorg are cancur‘rent at  (4,-1) .,

cx -1/ - o) + (-1 - )E = /17

oy =4/ - y 8)* ("1 - 0)° -
0z =44 - 5)2 + (-1 - 3)2 =1

Cirecle C = ((x,y): (x - ¥)° + (y + 1)2‘: 17

g

[
=
+
iy
ot

!
it
~

3

= ((x,¥): x° + y2 - 8x + 2y = é]

‘Medlan to XY is in {&,y): vy =3x - 12

Median to XZ 1s in {(x,¥): ¥ = - 3T + 77
k.3

Median to YZ 1s in [(x,y): ¥y = T?j

Median ‘to XY = {(x,y):

[o -
b o
Ny
[
= =
1]
]
Lk

Median to XZ = {(x,y): x %

- 5

1
= fa]
i
o
e
Ii

e
[

ﬁ‘
W
<
s
Il

edian to ¥Z = [(x y): X = 2k, ¥ = 3k,

vields trisection point (ﬁ;ﬁl) in

median to X¥ .

=
(]
o o

k zfg ylelds trisection point (jf,l) in
~ median to X2

i
o]

k = = ylelds trisection point (ff,l’

median to Y2

- ?{i”)

- A

n
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13, (a) Altitude to XY -is a subset of {(%,y): x = 5)

~ ..(b) The altitude ta__XZ 1is a subset of the line

Ll

]

I
&
+

|

- [(i{x)? y :'%?(x =8 = )y == gx 4 gg
The altitude to 2ZY 1s a subset of the line
[(KJY) y = x}. »
' C e
(¢) The orthocenter is (5,5). The orthocenter is in
k; the exterior of the triangle. . .
(d). The problém is to show that (4,-1)., {%3,1)
and (5,5) are collinéar. An*equa%iQﬁ'f@r
the line containing (4,-1) and. (5,5) is
y = 6x - 25. This equation is satisfied by
(32,1). . !

\ a
+

Yy




Chapter 1EV (. )

A Review Problems

Sections 1 through 5

\ ; §
1. (a) ecirele, 10, (0,0) °

(b) A on the circle; B 1interior; - C exterior

,y) x° + yE =100 , x = =10}

- (c) LyN C =
| - [(x,y)z y=0,x=-10] .

[(—1010)} . 5
((x,¥): x° +y° = 100 , y = 6)
((x,5):,%% = 64, y = 6)
((8,6) , (=8 6)]
- ((x,y)s %2 4 y°

((x,¥): 32 v 6xT

()

S

D’
_
0

D
‘n‘
I
[
O
O
e
I
%

—
i
ot
[
("]
VI ]
"~

-~
1]

!
—
le)
Q
<

i

¥

= ( :y) 36 y = §X}

= ((6, 5) » (*6 -8)} .
2

I
et
le)
e
Pl

= [(x,y,2): x + y + z

(b) (1) (10,0,0) -, (-10,0,
(2)" (0,10,0) , (0,-10, 8)
(3) (0,0,10) , (0,0,-10)

L ) -
(e) ((x,¥,2): x“ +y® =100, z = 0}

v
—
E il
~—

;‘(d) t(x,y,z); x° + 22 = 100 , ¥ =0}
0}

(e) ((x,¥,2): ¥y° + 2° = 100 , x k
(£) A 18 In S since 3° + (54)2 + (51ﬁ3)2 = 100,
B 18 in the interlor of &5 since

i 32 + (-5)% + 7° = 83 < 100 .

7 "
C *is 1in the exterior-'of S since S
jry
743
» -
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Aruitoxt provided by Eic:

(&) (x -

[(xsy,s);«xge+ vy ;x6§'+ by -3 =0, 2z

(b)

(a)

(b)

(d)

((x,y,2): x° + yo 4+ 2" - bx + 2y - 62 + 5

3)2:+ (y + E)E = 16 or

e 0}

24 (v7+ 1)

2 . 2. PO

2y (z -3) =9 or ,

'D]V

If they are:.

(1)
(e) -
(3)
(4)
(5)°

(6)

radii of the same or congruent circles.

in thé same cirdle and are assdclataeg with
congruent arcs. |
tangent-segments from the same exterior é?
point, ' ~
Chords in the same or congruent circles

o

and equidistant from the center.
the parts into which a dlameter perpen-
dicular to a chord separates the chord.

If 1t 1is:

(1)
(2)

(3)

inscribed in a Séﬁicircle; )
determined by a radius and the tangent at
its outer end. - ’
determined by a chofd and the dlameter
which bisects 1it. -

If they are:

(1)
(2)
(3)

(%)

%

‘Anscribed in congruent arcs.

B

intercept congruent-arcs,
the angles between two tangent-segments . ¢

from €he same exterior point and th%gline

which contains that point and th%fﬁénEEf
of the circle. . ‘ S
central angles assoclated with arcsa which

have the same degree measure,

If they are:

(1)

(2)

assoclated wlth congruent chords in
congruent clirecles. _
intefcepted by congruent inzsceribed angles

in congruent circles.

= -
# p

iy



/
A e/

(3).- associated with congruent central angles.
(4) both semicircles.
(5) the parts into which a diameter perpen-
) dicu;g: to ‘the chord associated wlth an .
=p

=

arc geparates the arc.

5. (a) The degree measure of the arc in which an gmgle
"~ : is inscribed 1 360 minus the degree measure
— of the arc which it intercepts. .
- Consider /APB a3 a cantral
angle. Then m /APB = m AB by
definition. Consider /APB as
formed by chords AAYT and BB
intersecting at the éentgr P.-
Then m /APB z%ﬁ(}ﬂ AB + m K'BY),
But .m AB = m A'B' . Therefore
m /APB = m AB 18 a speclal case
wathe theorem referred to in

the problem.
6. (a) chord ) (f) minor arc
) : (b) diameter (also chord) (g) major arc
(¢c) secant _— (h) inseribed angle
(d) radius , (1) central angle

(e) tangent

7. 55 and 70

8. m /AXB = 90 , because it is inscribed in a semicircle.
Therefore, m /AXY = 45 and m AY = 90 since /AXY
is inscribed in AXY . Hence the measure of central
angle /ACY 1s 90 making TY | AB .

9. (a) True (£f) True
(b) True (g) False

(c) False (h) True
(d) True (1) True
(e) False . (J) True

10, m/C =65 ;m/ABX = 65 ; m /CBA = 65 , Ty

a o

.




11. AY = AP and AX = AP , because tangent-spgments to
a circle from an external point are congruent.

Therefope, AY = AX . I S RS

12. The ' figure shows a cross-section A
with x the depth to be found.

v
P

252 = 20°% + (25 - x)°
- x)? .

25 = %

R

225 = /(2

#

e
.ﬂ.’_.u
W1

I

10 . The depth is ‘
10 inches. |

b
I

s
13. By the Pythagorean Theorem, ’
AD =9 . If r 1s the
radius, then 0D =71 - 9
and OC
in ADOC ,
2 (1

Hence,

3
I
W

H
[]

"
wi
b
1]
™

r° - 18r + 81 + 144 ,

.5

™

r =1
The dlameter of the wheel is 25 incnés long.

14, Consider the distance BX
to any other polnt X on
the circle, and the radlus
CX . '

]

BC + AB = AC CX
., B+ BX > CX . Hence,
BC + BX > BC + AB. and
BX > AB or AB < BX .
Also BX < BC + CX ,
or BX <« BC + CD .
Since BC + CD = BD ,
~ BD > BX . :
Thus AB <°BX ¢ BD where BX 1s any other segment
- Joining B to the circle.

+

e .
ca

746 ‘jﬁf'
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Aruitoxt provided by Eic:

= 3
I
= 3
o G
[} ]

Hence, m HE
(4000)% = (100)% + (4000 - x)
(4000 - %)% = 15,990,000 .

The shaft will be about 1f miles deep.

4ooo - x

mHE =r . Then ‘m /PCH = 90 - r , “
=180 - (90 - r) or 90 + r . Then '
m /NHC - 90 = (90 + r) - 90 ='r .

:

4000-x

[}

act
.

NH.D‘
W
e
-~
v

i
-
.y
W

X s approx.

T 1s the exterlor of the circle in the xz-plane
with its center at (0,0) and with radius 2 .
M 13 a e¢ircle in the xy-plane with 1ts center
at (2,-4) and with radius 7

N 13 the interlor of a circle in the yz-plane
with 1ts center at (0,0) and with its radius
equal to 3 .

R 1s the intersection of a sphere with its
center at (0,0,0) and with 1ts radius equal

to 5 and a plane parallel to the xy-plane

and intersecting the z-axis at (050,3) . This
i1s the circle R = {(x,y,z): % & yE 16 ,

3) which has 1ts center at (0,0,3) , has
a radius equal to U4 and lies in thé plane

13
]

((x,v,2): 2z = 3)

Two points, (1,0,0) and (-1,0,0) .

The intersection is the émpty get since D and
F are two concentric spheres with radii &4
and 24/2 respectively. :
The intersection is ((x,y,z): x° + N g,
|z] = 4) . U 1s a cylinder with its axis the
z-axls and with its cross section a circle with

2

center in the z-axis and radius 3 . U inter-
sects T in two circles, one in the plane
parallel to the xy-plane and 4 units above it,
the other parallel to the xy-plane and U units
below it. T

e



18, (AP)® = 1(8 + 1) = 9, by Theorem 12-15.
4 AP =PX =XV =3, 580 QX2 and XZ =6 .
3:AX =2 + 6, by Theorem 12-16,
AX = 4

19. The angle measures can be
gﬁeﬁefmined as shown.
Hence, APAR and AQCR.
“%E aré equilateral triangles
; and PBRQB 1s a parallelo-
gram, .
PC = PR + RC = AR + RQ .
But AR = AP and
Q -
C

-
I
)
[we
ol
i
=]
o]
W

]

AP + PB .

20. Applying Theorem 12-15, we have (AM)E = MR - M5 and
» (ME)2 = MR .- MS . Hence, (AM)2 = (MB)2 and

AM = MB . Similarly CN = ND .
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Aruitoxt provided by Eic:

Area

Chapter 12 7 \E

Review Problems

=
- ‘/ T

ar

(a) The arearof a circle is the limit of the areas
of the inscribed (or circumscribed) regular
polygons as the number of sides of the polygons
increases indefinitely. ([The exact wording of
the text may be used.] ‘

b) The length of an arc AB' of;a,cirele 15, the
limit 47 AFl + PlPE + ...+ Pnle as the
number of chords increases indefinitely. [The

' exact wording of the text may be used. ]

=

‘Between 1 and 2

s

; () 10 to 1 (¢) 100 to 1 ,

1

2
2 dy2 Td~
A?'I?T;‘T,T(g) 5 -

The inscribed octagon has the greater apothem and
the greater perimeter. The cilrcumseribed square has

the ‘greater perimeter; the apothems are eéual,

il
m#—n
Liw ]

A

60
C

Il
=
e
]
W

in.; arec length = ?% inches

There are many aééeptable proofs. One 1is to
consider the situation wherein the vertices of the
inscribed triangle are the midpoints of the cirecum-
scribed triangle, and prove the four smaller

trianglgs congruent.



14, mDA =88 and mBC = 122

m /EDC = m /DBC = 31
m /CMD = m /AMB = m /ABC = 75
b m /DMA = m /CMB = 105
- m /FDB = m /DCB = 88
! m /ACB = m /ACB = m /DBA = Lk

. m /CAB = m /CDB ,

'm /DCE =.m /BDE = 92° '

. m /DEC = 57 .
L m /DFA = 48 |

]
1P
B

“.m /CAF = 119

m /CDF = 149
m /ACE = 136

15. Draw QE |["PA®. Since PQ = 20- and PE = 7 + 9
then QE = 12 = AB . '

16. (a) By Corollary 12-7-2,
.m /ADP = m /BCP and
-m /DAP = m /CBP . Hence
AAPD ~ ABPC by A.A. -

(b) Since similar tfianglesihave Q@rfespondiﬁg gldes
“ proportional, AP - PC = PD - PB . '
17. (a) Yes. The slope of AB is -1 .
(b) The midpoint 1s (2,2) .
(¢) yv=x ‘ v
(df' The origin 13 contained in vy = x . This
1llustrates Corollary 12-4-3: 1In the plane
of a circle, the perpendicular blsector of a
chord contains the center of the circle,
(e) The points with coordinates (242, 242Z) ,
' and (-2 4/Z, -2 ¢/Z) ; midpoint,

#

16 ,



By hypéthgsis, P 1in the figure
is the center of the cirecle, and-
m /AEP'= m /DEP . :

Prove: AB 2 CD .

I g
S

Consider ¥G 1 AB

and PH | CD .

Then APGE and APHE

are right triangles A
with m /GEP = m /HEP

and EP = EP . Therfé
fore, APGE = APHE ,
making PG = PH . Therefore,
AB = CD , because in the same
cirele or congruent circles,
chords equidistant from the

center are congruent.
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